Assessment #2 –Course Grades Part 1 –Description of Assessment

Our candidates' grades on a set of required mathematics courses provide evidence that our candidates' meet NCTM CAEP Standard 1a. We have selected a set of our required courses for use in providing this evidence. The courses, listed below with their catalog descriptions, were selected because the courses are mathematics content courses. All but one of these courses are taken by both mathematics and mathematics education majors, and the expectations and requirements within the courses are the same for both groups of candidates. The content of the selected courses provides our candidates with the mathematics background required of a secondary mathematics educator. We chose not to include any courses that are more pedagogical in nature as we were interested in determining the achievement of our candidates regarding mathematics content. The tables found in the remainder of this document provide a more detailed alignment. We are including the description of a new course we are teaching for the first time this year. The course is titled "Advanced Perspectives on Secondary Geometry and Trigonometry" and is a required course for all mathematics education candidates beginning with those entering the program in Fall 2014. This course was designed to address an identified program weakness in the areas of geometry and trigonometry.

The documents related to this assessment are in three separate files due to the size of the files. This document includes parts 1 and 2a (Course alignment to NCTM/CAEP standards table). The alignment of our courses to the content addenda is included in a second document. Parts 3 and 4, university grade policy and data tables, are found in the third file.

Selected Course	Catalog Description
Math 1151	This course is intended to develop an understanding of the basic concepts
Calculus and Analytic Geometry I	of plane analytic geometry, the limit process, continuity of functions,
	differentiation, integration, and areas under and between curves. It also
	provides an introduction to various applications of the calculus.
Math 1152 Calculus and Analytic	This course provides a continuation of the study of topics from Math
Geometry II	1151.
Math 2410	The purpose of this course is to introduce students to basic structures and
Discrete Mathematics	concepts that form the foundation for much of modern mathematics and
	to introduce various methods of proof.
Math 2221	A course with an emphasis on the techniques of proof and construction in
Foundations of Geometry	geometry, the properties of a set of postulates, a brief review of Euclidean
	geometry, and the study of other geometries.
Math 2861 Advanced Perspectives on	A course designed to help students investigate the real number system as
High School Mathematics	studied in high school mathematics from an advanced perspective.
Math 2862	A course designed to help students recognize relationships between
Advanced Perspectives on Secondary	secondary geometry/trigonometry and university mathematics.
Geometry and Trigonometry	
Math 3710	This course will provide an introduction to the concepts of linear
Linear Algebra	transformation and vector space and their use in pure and applied mathematics.
Math 4710 Algebraic Structures	A study of groups, rings, and fields with an emphasis in the study of roots
	of polynomials.
Math 4851	A course focusing on the concepts and methods of teaching probability
Probability and Statistics for	and statistics in the middle and high school mathematics programs.
Middle/High School Mathematics	
Math 4233	Provides the opportunity to experience and understand the importance of
The Scientific, Historical, and	mathematics in human development.
Sociological Impact of Mathematics	

Part 2 – Course Alignment with NCTM/CAEP Standards

** As noted earlier, we are including a new course Math 2862 in the table. This course was designed to address identified program weaknesses in geometry and trigonometry.

NCTM/CAEP	Course Number and Name	Course Components Addressing Standard
Standard		Elements
Elements		
Addressed by		
Course		
	Math 1151 Calculus and Analytic Geometry I	The content of this course includes basic concepts of plane analytic geometry, the limit process, continuity of functions, differentiation, integration, and areas under and between curves. As this content is studied, candidates are provided multiple opportunities to demonstrate their knowledge of the major concepts, algorithms, and procedures of Calculus. Assignments and assessments used in the course provide evidence of the acquisition of this knowledge.
Standard 1: Content Knowledge		The course also provides an introduction to various applications of the calculus in the areas of business, economics, and physical sciences.
8	Math 1152 Calculus and	The content of this course includes the study
Element 1a	Analytic Geometry II	of various techniques of integration, limits of the indeterminate forms, improper integrals, and approximation of functions by Taylor's polynomials, concepts of the polar coordinate system, the conic sections in polar and rectangular coordinates, vectors in the plane, parametric equations, vectors in three dimensional space, sequences, the concept of convergence, and infinite series. As this content is studied, candidates are provided multiple opportunities to demonstrate their knowledge of the major concepts, algorithms, and procedures of Calculus. Assignments and assessments used in the course provide evidence of the acquisition of this knowledge.
		Student learn problem -solving techniques in areas such as geometry, physics, and various

e 3	1	
		real-world situations.
	Math 2221 Foundations of Geometry	The content of this course includes the study the techniques of proof and construction in geometry, the properties of a set of postulates, a brief review of Euclidean geometry, and the study of other geometries. Assignments and assessments used in the course provide evidence of the acquisition of this knowledge. As an example of a course activity, as part of the course, students are assigned a surface and create their own system of geometry using that surface.
	Math 2410 Discrete Mathematics	The content of this course introduces students to the basic structures and concepts that form the foundation of much of modern mathematics. Students are introduced to various methods which they will apply in this and future courses. Students will study the basic mathematical concepts of logic, proofs, sets, relations, functions, and various topics from discrete mathematics. Assignments and assessments used in the course provide evidence of the acquisition of this knowledge.
	Math 2861 Advanced Perspectives on High School Mathematics	The content of this course includes the study of the connections between high school and university mathematics, alternate ways of solving problems, connecting mathematical domains, and heavy emphasis on the features and uses of a variety of functions. Assignments and assessments used in the course provide evidence of the acquisition of this knowledge. In this course, students solve and present their solutions to a wide variety of mathematical problems.
	Math 2862 Advanced Perspectives on Secondary Geometry and Trigonometry	The content of this course includes the study of connections between secondary geometry and trigonometry and university mathematics. Major topics include intuition and proof. Measurement, geometric transformations, study of triangles and circles, trigonometry, and an introduction to non-Euclidean geometry. Assignments and assessments used in the course provide evidence of the acquisition of this

	knowledge. As a major component of this
	course, students solve and present their
	solutions to a wide variety of problems in the
	area of geometry and trigonometry.
Math 3710	The content of this course includes the study
Linear Algebr	
C C	vector space and their use in pure and applied
	mathematics. Major topics include: systems
	of linear equations and matrices,
	determinants, vector spaces, linear
	transformations, Eigenvalues and
	Eigenvectors, and applications of these
	topics. Assignments and assessments used in
	the course provide evidence of the
	acquisition of this knowledge.
Math 4710 Algeb	
Structures	of basic algebraic systems such as groups,
Structures	rings, and fields. The course will enable the
	student to broaden and develop his/her
	facility in mathematical abstraction while
	providing an algebraic perspective to familiar
	themes such as Euclidean geometry,
	e
	polynomial algebra, and number theory. Assignments and assessments used in the
	course provide evidence of the acquisition of
	this knowledge.
Math 4851	The content of this course includes
Probability and Stati Middle/High Sch	
Mathematics	
Wathematics	- $ -$
	regression, curve fitting, counting
	techniques, rules of probability, probability
	distributions, probability distribution
	functions, probability density functions,
	sampling and sampling distributions,
	confidence intervals, hypothesis testing, and the rele of probability and statistics in the
	the role of probability and statistics in the
	middle and high school curriculum.
	Assignments and assessments used in the
	course provide evidence of the acquisition of
	this knowledge.
	As an example of a course activity, students
	complete a statistics project that involves
	them in designing a study and collecting,
	organizing, summarizing and presenting data.
Math 4233	The content of this course includes the

Page	5
IUSC	5

The Scientific, Historical,	historical development of mathematics, the
and Sociological Impact of	relationships that exist among various topics
Mathematics	in mathematics, the historical, scientific,
	sociological, cultural, and ethical factors that
	have influenced the development of
	mathematics, and the importance of various
	mathematicians and their contributions to the
	development of mathematics.
	Assignments and assessments used in the
	course provide evidence of the acquisition of
	this knowledge.
	Students research and provide presentations
	on a variety of mathematicians and historical
	mathematical events. They create a problem-
	solving portfolio in which they demonstrate
	their ability to solve a variety of
	mathematical problems.

NCTM/CAEP	Course Number and	Course Components Addressing Standard
Standard	Name	Elements
Elements		
Addressed by Course		
Course	MATH 1151	Students are expected to do muchlem solving
	-	Students are expected to do problem solving
	Calculus and Analytic	related to nearly every concept. For
	Geometry I	example, derivatives are used to solve
		problems related to velocity, acceleration, related rates and optimization. Multiple
		strategies are used in solving many of these
Element 2a		problems. Optimization problems may
Use problem		involve solving equations, hand drawn
solving to develop		graphs, graphing utilities and differentiation.
conceptual		Problems in Calculus I come from many
understanding,		contexts including business (e.g. finding
make sense of a		maximum profit), engineering (e.g. finding
wide variety of		the least expensive route for a pipe), biology
problems and		(e.g. finding the rate of spread of disease),
persevere in		physics (e.g. finding centers of mass) and
solving them,		many other fields.
apply and adapt a	MATH 1152	Students solve problems every day, some
variety of	Calculus and Analytic	more applied than others. Multiple problem
strategies in	Geometry II	solving strategies are used in techniques of
solving problems		integration. Sometimes a single integral may
confronted within		require multiple techniques. In addition,
the field of		students may solve or gain insight into a
mathematics and		definite integral using graphs or integration

Page 6		
other contexts,		technology on a calculator or computer
and formulate and		program. Applied problems may involve
test conjectures in		finding the area of unusually shaped objects,
order to frame		finding the center of mass of an object, etc.
generalizations.		Multiple strategies are also required in
		studying infinite series. Determining
		whether a series converges or not generally
		includes applying some logical tests.
		Students apply different strategies depending
		on the type of series. Multiple strategies are
		also used when studying integration
		techniques. Problems in Calculus II, come
		from a variety of fields including physics,
		engineering, geometry, and astronomy
	Math 2410	In this course students learn the art of
	Discrete Mathematics	forming conjectures about mathematical
		relationships and proving under what
		conditions these relationships hold. This is
		accomplished by considering many
		examples, noticing patterns, testing these
		patterns with additional examples, and,
		finally, constructing an argument which
		shows that the pattern holds in general.
		Through doing so, students develop both an
		intuitive and a rigorous approach to solving
		problems involving <i>what</i> relationships hold
		and <i>when</i> , <i>why</i> and <i>how</i> they hold. Problems
		in this course come from the fields of set
		theory and combinatorics (counting), number
		theory (e.g. divisibility and factorization),
		and functions and relations (how to relate
		one structure to another). The analytical and
		relational habits of thought formed in this
		course apply to essentially every experience
		the student will have in life, and in particular
		when they ask: Is this statement true? What
		conditions are necessary for it to be true? Is
		it always true? Why is it true?
	Math 3710	Students solve problems by performing
	Linear Algebra	computations with linear systems,
		calculating determinants and solutions to
		linear systems of equations, and showing
		conceptual understanding by using properties
		of those procedures to solve problems about
		linear systems. Students make and test
		conjectures in determining whether defined
		conjectures in acternining whether defined

Page	7
гадс	1

Page 7		
		sets are vector spaces, and whether defined functions are linear transformations. Students use not only the procedure of computing in linear systems, but also use the concepts of the properties of those computations to solve problems (eg. the row reduction properties are used in arguments about determinants and linear independence). Students generalize computations and computational procedures to prove properties about linear spaces and transformations.
	Math 2221 Foundations of Geometry	Students use problem solving throughout the course. They use construction tools as well as computer software to solve a variety of problems. Students create a system of geometry on an alternate surface such as a doughnut, volcano, or sphere and problem solve to see what figures exists and the properties of these figures, and then substantiate properties and relationships.
	Math 4710 Algebraic Structures	In this course students hone their logical, analytical and proof-writing skills by addressing the concept of abstraction in mathematical thought. Students consider properties shared by large classes of objects (integers, functions, matrices, etc.), and find relationships and further properties that are implied by the basic definitions. This is a course that emphasizes the <i>discovery</i> of relationships required by <i>invented</i> and <i>abstracted</i> structures. The habits of thought developed in this course contribute to the powerful problem solving techniques of abstraction, generalization, and deduction. In particular, students are introduced to the idea that in order to solve a specific concrete problem, it is sometimes easier to generalize and abstract, to come to the root of the question, and then solve the problem from a more theoretical viewpoint.
NCTM/CAEP Standard Elements Addressed by Course	Course Number and Name	Course Components Addressing Standard Elements

Page 8		
	Math 1151	Students must reason abstractly and
	Calculus and Analytic	construct a viable proof when proving limits
	Geometry I	of functions. They also reason abstractly as
		we present limit theorems, derivative
		theorems and many other generalizations.
		For example, we start by finding the
		derivative of a power function using the
		definition of the derivative, but soon realize
		there is a pattern evolving. So, we make a
Element 2b		conjecture about derivatives of powers and
Reason abstractly,		then prove the theorem. Students use
reflectively,		multiple representations in many ways. One
quantitatively with		example would be finding the limit of a
attention to units,		function. Students represent a limit using a
constructing		table of values, a graph and symbolically by
viable arguments		applying limit theorems. Throughout
and proofs, and		calculus, students are required to use correct
critiquing the		vocabulary and symbols to represent things
reasoning of		such as limits, derivatives and integrals.
others; represent		They are also required to pay attention to
and model		units in application problems. In fact, in
generalizations		related rate problems, for example, paying
using		attention to units can often guide the solution
mathematics;		or provide a check for the final solution.
recognize	Math 1152	Students must reason abstractly in much of
structure and	Calculus and Analytic	Calculus II. Constructing viable arguments
express regularity	Geometry II	is particularly important in applying infinite
in patterns of	Geometry II	series tests. Critiquing the reasoning of
mathematical		others is done informally as students work
reasoning; use		together on projects and compare answers to
multiple		homework problems. Multiple
representations to		representations are used when studying
model and		integration techniques, conic sections, and
describe		vectors. Students are required to use
mathematics; and		1
utilize		appropriate vocabulary and symbols
mathematical	Math 2410	throughout the course.
	Math 2410	This standard could be used as a description
vocabulary and	Discrete Mathematics	of the course. Students study proof
symbols to		techniques from the standpoint of conjecture,
communicate mathematical		example and counterexample, and formal
		proof. Throughout, the emphasis is on
ideas to others.		understanding patterns, generalizing,
		constructing logical arguments via chains of
		more simple deductions, and clearly
		communicating both the statements and their
		proofs. Students observe and participate in

Page 9		
	Math 3710 Linear Algebra	instructor-created proofs, create their own proofs, present their proofs to their peers and the instructor, critique their own and others' proofs, and use the proven theorems to perform calculation and generate further conjectures. Students create and share mathematical arguments, proofs and counterexamples in
	Linear Algebra	the context of vector spaces and linear transformations. Students solve problems and write mathematical arguments about transformations, coordinates and coordinate systems and vectors.
	Math 2221 Foundations of Geometry	Proof is a major part of this course. Students are introduced to various types of proofs and students compare and contrast informal and formal proof as well as inductive and deductive proofs. Students are provided completed proofs that have been cut into parts and they must reconstruct the proof and provide arguments for how they reconstructed them.
	Math 4710 Algebraic Structures	Groups, rings and fields are the abstract structures that represent recurring patterns of behavior in mathematical and real-world experience. Students recognize and formalize these structures with axiomatic definitions and via homomorphisms that illuminate similarities between structures. Moreover, students rigorously justify conclusions about additional properties of structures using the techniques and vocabulary of mathematical reasoning.
NCTM/CAEP Standard Elements Addressed by Course	Course Number and Name	Course Components Addressing Standard Elements
	Math 1151 Calculus and Analytic Geometry I	Students are required to formulate, represent, analyze and interpret mathematical models from business (e.g. finding maximum profit), engineering (e.g. finding the least expensive route for a pipe), biology (e.g. finding the rate of spread of disease), physics (e.g.

Page	10
------	----

Element 2c Formulate represents, analyze, and interpret mathematical models derived from real-world contexts or mathematical problems.		finding centers of mass) and many other fields. In some problems the student is required to formulate the model and in some cases the model is given, but in each case the student must analyze and interpret the model. This course includes many applied models, many of the same mathematical concepts and models are also studies from a purely mathematical. Such topics and models include differentiation techniques, limit techniques, and basic integration techniques.
	Math 1152 Calculus and Analytic Geometry II	Students are required to formulate, represent, analyze and interpret mathematical models from a variety of fields including physics (e.g. velocity and acceleration in parametric equations), engineering (e.g. finding angles and magnitude of force), and astronomy (e.g. finding orbits of planets). In some problems the student is required to formulate the model and in some cases the model is given, but in each case the student must analyze and interpret the model. This course also involves many mathematical models which focus on purely mathematical problems, such as finding volumes, surface areas, arc length and curvature. Although these topics have applications, many of the problems we work on are purely mathematical rather than applied.
	Math 2410 Discrete Mathematics	Students derive and justify formulae that hold in very general settings. Though most problems addressed in this course are abstracted from large classes of real-world problems, some topics (notably combinatorics and probability) lend themselves to direct applications. Skills, techniques and theorems developed in this course support the application of mathematics across the curriculum. In particular, it is often in this course that students first learn to mathematics as more than solving equations. They learn that many

Page	11
------	----

Page 11		
Page 11	Math 3710 Linear Algebra	familiar objects and topics can be approached from a mathematical viewpoint. Students formulate represents, analyze and interpret models in a variety of ways in this course. Students apply, analyze and describe linear transformations, vectors, coordinates and coordinate systems. Students use vectors and matrices to analyze and describe lines, planes and subspaces in two, three and higher dimensions. Students use linear algebra techniques to analyze lines, planes and spaces from a vector standpoint.
	Math 2221 Foundations of Geometry	Students taxicab geometry and the properties and relationships that exist. They solve a variety of real-world problems in the area of geometry.
	Math 4710 Algebraic Structures	The formal structures studied in this course are the result of abstraction from numerous historical problems: finding roots of polynomials, determining symmetries of geometrical objects, etc. Throughout the course this historical motivation is referenced and the general and abstract techniques are applied to these problems. Moreover, the rigorous treatment of hypothesis and conclusion in the course allows precise and appropriate use of the theory in other courses and in work outside the classroom.
NCTM/CAEP Standard Elements Addressed by Course	Course Number and Name	Course Components Addressing Standard Elements
Element 2d Organize	Math 1151 Calculus and Analytic Geometry I	Students must organize their mathematical thinking as they work homework problems and solve problems on the tests. On tests and homework they must express their ideas precisely in writing. They express their ideas orally during discussions in class and as they work on group projects.
mathematical thinking and use	Math 1152 Calculus and Analytic	Students must organize their mathematical thinking as they work homework problems

Fage 12	Coord II	
the language of	Geometry II	and solve problems on the tests. On tests
mathematics to		and homework they must express their ideas
express idea		precisely in writing. They express their
precisely, both		ideas orally during discussions in class and
orally and in		as they work on group projects.
writing to multiple	Math 2410	In addition to being an introduction to
auidences.	Discrete Mathematics	discrete mathematical structures, this course
		is an introduction to mathematical proof, i.e.,
		the language by which mathematical
		reasoning is expressed. Students learn to
		develop lines of logical reasoning and to
		write them clearly, succinctly, and with
		appropriate mathematical notation. They
		practice communicating with the instructor
		and with each other through homework
		assignments and board work, and are
		additionally graded on their communication
		skills through regular examination. Feedback
		on the appropriateness of student
		communication is given ate frequent
		e i
		intervals, and students are encouraged to
		view their communication as a recursive
		process where they make one or more
		revisions before giving a final clear and
		concise solution/proof.
	Math 3710	Students write mathematical arguments and
	Linear Algebra	construct counterexamples on linear algebra
		topics including establishing identities, and
		identifying vector spaces and linear
		transformations. Students present their
		mathematical arguments visually and in
		writing, using language and symbolism in
		vectors, matrices, and linear transformations.
	Math 2221	Students in this course create mathematical
	Foundations of Geometry	arguments and proofs and communicate
		these both verbally and in writing. They
		listen to and critique those arguments
		provided by other students. The students
		work in pairs to create a system of geometry
		on a provided surface such as a doughnut or
		hubcap. They must prove the properties and
		relationships that exist and present their
		work to the class.
	Math 4710	This proof-based course requires students to
	Algebraic Structures	develop and practice their reasoning and
		communication skills in all course activities.
		communication skins in an course activities.

Page 12

Page	13
I USC	тэ

Page 13		
		Assigned readings and problems, oral presentations to the class, and regular examinations all depend completely on the students' ability to communicate mathematics effectively. In this course, students learn that often times, the method and solution is more important than the final answer. Therefore, the clear communication of the method and/or proof is emphasized. Students receive a great deal of feedback from their instructor and throughout the course learn to improve their skills of mathematical communication.
NCTM/CAEP	Course Number and	Course Components Addressing Standard
Standard	Name	Elements
Elements		
Addressed by		
Course		
	Math 1151	In Calculus I students take concepts that they
	Calculus and Analytic	know from algebra and run them through a
	Geometry I	limiting process to build new concepts. For
		example, in algebra students learn how to
		find the area of a rectangle. In Calculus I,
Element 2e		we use the area of rectangles and a limiting process to find the area under a curve. Here,
Demonstrate the		students recognize how mathematical ideas
interconnectedness		build on one another. In calculus, students
of mathematical		recognize connections among algebra,
ideas and how		geometry, trigonometry and calculus and
they build on one		how these are related to content areas such
another and		as economics, engineering, physics,
recognize and		business, biology and social sciences.
apply connections	Math 1152	In Calculus II, students continue to build
among	Calculus and Analytic	connections between algebra, geometry,
mathematical	Geometry II	trigonometry and calculus, as well as other
ideas and across		content fields and real-world contexts such
various content		as economics, engineering, physics,
areas and real-		business, biology and social sciences.
world contexts.	Math 2410	This course reintroduces students to various
	Discrete Mathematics	discrete structures such as sets, integers, and
		functions. Though they have seen these
		structures many times before in their
		mathematical education, this rigorous
		approach enriches and extends the
		mathematical definitions, techniques and
		theorems that they have worked with since

Math 3710 Linear Algebra	elementary school. Students develop new insights about these familiar structures and find new ways to express these insights with advanced mathematical vocabulary, notation, and techniques. Students integrate their knowledge from previous courses in algebra with the new matrix and vector space techniques they are learning. Students use their numerical and algebraic computation skills in solving linear algebra problems. Students demonstrate knowledge of connections between geometry and algebra in their work with low dimensional vector spaces. Students study rotations, reflections and dilations in the context of linear transformations, and translate between the geometric and matrix form of these transformations. Students represent low dimension vector spaces both geometrically and algebraically, and translate between these contexts. Students use vectors and matrices as systems that have some of the properties of the real- number systems.
Math 2221 Foundations of Geometry	Students in this course use the definitions they have previously worked with and explore how a change in the definition impacts the outcome. Students use logic and proof types from other areas of mathematics and apply those to situations involving geometry.
Math 4710 Algebraic Structures	The structures developed in the course (groups, rings and fields) express the patterns that have occurred in many or all of their previous and future mathematics courses, and in other technical and scientific fields. A strong emphasis on examples from a variety of mathematical and technical fields helps students develop intuition into the abstract structures themselves, as well as recognize connections between the disparate fields. In particular, through generalizing and

Page 15		
		abstracting, students are able to see that
		many familiar objects fall under a general
		setting and can be studied simultaneously.
NCTM/CAEP	Course	Course Components Addressing Standard
Standard		Elements
Elements		
Addressed by		
Course		
	Math 1151	Throughout the course students use the
	Calculus and Analytic	mathematical practices as they learn new
	Geometry I	concepts. For each concept, they represent
		the idea in multiple ways (e.g. limits are
		represented using graphs, tables of values
Element 2f		and algebraically), they must use the
Model how the		representations to correctly reason about the
development of		concept, and communicate their reasoning
mathematical		verbally (in-class discussions) and in writing
understanding within and among		(on homework and tests). In addition, problem solving is incorporated along the
mathematical		way with each new concept. For example,
domains intersects		after a discussion on integration, the students
with the		are expected to be able to apply the concepts
mathematical		to problems they haven't seen, including
practices of		applications such as area under a curve and
problem solving,		center of mass.
reasoning,	Math 1152	Throughout the course students use the
communicating,	Calculus and Analytic	mathematical practices as they learn new
connecting, and	Geometry II	concepts. For each concept, they represent
representing.	5	the idea in multiple ways (e.g. vectors can be
		represented graphically or algebraically),
		they must use the representations to correctly
		reason about the concept, and communicate
		their reasoning verbally (in-class
		discussions) and in writing (on homework
		and tests). In addition, problem solving is
		incorporated along the way with each new
		concept. For example, after a discussion of
		cross products and dot products of vectors,
		students use the concepts to find equations of
		lines and planes in space.
	Math 2410	In this course students learn about various
	Discrete Mathematics	discrete structures as well as various
		mathematical tools and proof techniques.
		Beginning with straightforward
		mathematical objects, students learn about
		methods of proof. As more involved notation

Page 10

Linear Algebra	and proof techniques are developed, students are able to consider more complicated objects. The computations and studies of sets and functions lead to the development of new algorithms and methods of proof. In turn, these algorithms and proof techniques allow for more interesting objects to be introduced and studied. Linear algebra allows students work with important multivariable problems and provides students with general-purpose matrix methods that will serve them well in many fields, including mathematics, science, engineering, computer science, and economics. Students learn to represent situations that involve variable quantities with expressions, equations, and matrices; use tables and graphs as tools to interpret expressions and matrices, and solve equations and inequalities; Students develop an understanding of properties of, and representations for, the addition and multiplication of vectors and matrices. Students use geometric properties (sub- spaces which are parallel or perpendicular or projections onto subspaces) and connect these to the corresponding vector calculations using expressions and equations in linear systems.
Math 2221	In this course, students use the mathematical
Foundations of Geometry	practices as they learn new content. New content is developed through the use of the practices. Reasoning is used to create proofs, problem solving is used in the creation of new geometry systems, connections are made between definitions and these new systems, and communication of idea occurs both orally and in writing.
Math 4710 Algebraic Structures	In this course students learn about algebraic structures such as groups, rings, and fields. They also learn about various mathematical

Page	17 נ
rage	: I/

tools such as permutations and
homomorphisms, and learn new proof
techniques using these tools. Beginning with
familiar examples of algebraic objects,
students learn about these tools and proof
techniques. As more involved tools and
techniques are developed, students are able
to consider more complicated and interesting
algebraic objects. The study of objects of
increasing complexity complements the
study of more involved techniques and
methods of proof.

NCTM CAEP Standards (2012) Content Alignment Table – Secondary (Supporting Documenting Course Grades as an Assessment of Candidate Content Knowledge)

Instructions:

Completion of this mathematics content alignment table is one of the required components of the documentation requirements for programs using course grades as an assessment. This document is designed as a form and must be used for entering required information into each "Click here to enter text" box, which will expand as needed. Do not retype the form. Since this form is a template, it will open as a document to be renamed and saved upon completion. Separate forms by program level (e.g., undergraduate or graduate) and program type (e.g., MAT or M. Ed.) are required. Specific directions for completing the form based on the location of mathematics/mathematics education coursework completion follow:

Undergraduate Programs and Graduate Programs where Mathematics/Mathematics Education Coursework Taken at Submitting Institution

- Column 2: Specify selected course number(s) and name(s) of **required** coursework that addresses each competency listed in the first column. If no required coursework addresses a specific competency, enter "Not addressed."
- Column 3: Describe all technology and representational tools, including concrete models, used in **required** courses that address each competency listed in the first column. If required coursework does not include the use of technology and representational tools, enter "Not included."
- Column 4: Include course description(s) for all **required** courses listed in the second column. It is sufficient to include course descriptions by mathematical domain (e.g., algebra, statistics and probability) rather than by individual competency.

Graduate Program where Mathematics/Mathematics Education Coursework Taken at Another (Non-Submitting) Institution

- Column 2: Specify selected course number(s) and name(s) of **required** undergraduate coursework that addresses each competency listed in the first column. Describe the advising decision that ensures program completers have studied the required mathematics content. If no required coursework addresses a specific competency, enter "Not addressed."
- Column 3: Describe all technology and representational tools, including concrete models, used in **required** courses that address each competency listed in the first column. If not known, do not leave the cell blank; rather, enter "Not verifiable".
- Column 4: Include course description(s) for all **required** courses listed in the second column. It is sufficient to include course descriptions by mathematical domain (e.g., algebra, statistics and probability) rather than by individual competency.
- Include the transcript analysis form that is used by the program to determine sufficiency of undergraduate courses taken by a program candidate at another institution and to specify coursework required to remediate deficiencies in the mathematics acquirement of program candidates or completers. The transcript analysis process must adhere to the <u>Guidelines for</u> <u>Documenting a Transcript Analysis</u>.

Institution Name	University of Central Missouri
Program Name	BSE Mathematics
Program Type (e.g.,	Baccalaureate
Baccalaureate or M.Ed.)	

A. Secondary Mathematics Teachers

All secondary mathematics teachers should be prepared with depth and breadth in the following mathematical domains: Number, Algebra, Geometry, Trigonometry, Statistics, Probability, Calculus, and Discrete Mathematics. All teachers certified in secondary mathematics should know, understand, teach, and be able to communicate their mathematical knowledge with the breadth of understanding reflecting the following competencies for each of these domains.

A.1. Number and Quantity To be prepared to develop student mathematical proficiency, all secondary mathematics teachers should know the following topics related to number and quantity with their content understanding and mathematical practices supported by appropriate technology and varied representational tools, including concrete models:	Required Course Number(s) and Name(s)	Technology and Representational Tools Including Concrete Models by Competency	Course Description(s)
A.1.1 Structure, properties, relationships, operations, and representations including standard and non-standard algorithms, of numbers and number systems including integer, rational, irrational, real, and complex numbers A.1.2 Fundamental ideas of number theory (divisors, factors and factorization, primes, composite numbers, greatest common factor, least common multiple, and modular arithmetic)	MATH 2861 – Advanced Perspectives on High School Mathematics MATH 2410 - Discrete Mathematics MATH 2861 - Advanced Perspectives on High School Mathematics MATH 2410 – Discrete Matheatmics	Graphing calculators and models such as counters and numberlines for developing integers NCTM Illuminations website, factor game, National Library of Virtual Manipulatives, Sieve of Erathosenes	MATH 1151 – Topics include: limits and continuity, finding limits and formal definitions of limits, one-sided and infinite limits, derivative, the derivative of a function and tangent lines, differentiation rules, rates of change, derivatives of trigonometric functions, differentiation of
A.1.3 Quantitative reasoning and relationships that include ratio, rate, and proportion and the use of units in problem situations	MATH 2221 – Foundations of Geometry MATH 2861 – Advanced Perspectives on High School	Motion dectectors, GeoGebra	composite and implicit functions, differentiation of rational powers of functions, related rates, applications of

	I	[
	Mathematics		derivative, extreme
	MATH 2862 –		values of functions the
	Advanced		Mean Value Theorem,
	Perspectives on		the first derivative test,
	Secondary		limits at infinity and
	Geometry and		asymptotes of a graph,
	Trigonometry		optimization and
	MATH 1151 –		differentials,
	Calculus and		,
	Analytic Geometry I		integration, indefinite
	MATH 1152 -		integrals and
	Calculus and		differential equations,
	Analytic Geometry		integration by
	II		substitution, the
A.1.4 Vector and matrix	MATH 3710 -	Graphing	definite integral,
operations, modeling, and	Linear Algebra	calculators, iPads	properties of definite
applications			integral, applications
A.1.5 Historical development	MATH 4233-	Variety of internet	to area, the
and perspectives of number,	Scientific,	sources, power	Fundamental Theorem
number systems, and quantity	Historical, and	point for student	of Calculus,
including contributions of	Sociological Impact	presentations,	substitution in definite
significant figures and diverse	of Mathematics	YouTube videos	
cultures		to illustrate	integrals and
		concepts	numerical integration,
			inverse functions and
			their derivatives,
			natural logarithm
			function, natural
			exponential functions,
			growth and decay,
			inverse trigonometric
			functions, hyperbolic
			functions, applications
			of integrals, areas
			between curves,
			volumes of solids of
			revolution, finding
			volumes by slicing, arc
			length, areas of
			surfaces of revolution
			and work, moments
			and centers of mass
			MATH 1152 –
			Topics include:
			techniques of
			integration (by parts,
			by trigonometric
			substitution, of powers

	of trigonometric
	functions, of rational
	functions by partial
	fractions, improper
	integrals), sequences
	and convergence of
	sequences, bounded
	sequences and
	monotonic sequences,
	infinite series of
	positive terms,
	alternating series and
	0
	their convergence, absolute and
	conditional
	convergence of series,
	the integral test, root
	test, ratio test,
	introduction to power
	series, differentiation
	and integration of
	power series, Taylor's
	series, binomial series,
	conic sections,
	quadratic equations,
	rotations, classifying
	conic sections by
	eccentricity,
	parametrizations of
	plane curves and
	calculus of
	parametrized curves,
	polar coordinates and
	graphing in polar
	coordinates, polar
	equations for conic
	sections, integration in
	polar coordinates,
	vectors in three
	dimensional space and
	solid geometry,
	vectors in the plane,
	vectors in the plane, vectors in space, dot
	products and cross
	products, lines and
	planes in space,

cylinders and	
quadratic surfaces,	
cylindrical and	
spherical coordinate	es,
vector-valued	-
functions and space	;
curves, unit tangent	
and unit normal	
vectors, arc length a	as
the parameter for	
curves, curvature,	
torsion, TNB frame.	
plane motion	,
MATH 2221-	
Topics include:	
axioms and postulat	tec
in geometry, role of	
definitions, role of	L
axioms, role of	
postulates, axioms of	of
connection, axioms	
betweeness, axioms	
congruence, axioms	
continuity, types an	a
formats of proofs,	
validity of	
propositions in	
Euclid's Elements,	
equivalent and	
alternate forms of	
Euclid's fifth	
postulate, similarity	',
Euclidean results	
concerning circles,	
Euclidean results	
concerning triangles	s,
constructions in	
Euclidean geometry	Ι,
philosophy of	
construction, basic	
constructions in	
Euclidean geometry	/
MATH 2410 –	
Topics include: basi	ic
concepts of logic,	
direct proofs, proofs	s

	by counterexample,
	proofs by
	contraposition, proofs
	by contradiction,
	constructive and
	nonconstructive
	proofs, mathematical
	induction, basic
	concepts of sets, set
	operations, Venn
	diagrams,
	containments and
	equality, mappings and
	their properties,
	cardinality and
	countability, Cartesian
	products and relations,
	division algorithm,
	Euclidean algorithm,
	modular arithmetic,
	pigeonhole principle,
	permutations,
	combinations,
	binomial theorem and
	Pascal's triangle, the
	principle of inclusion-
	exclusion, discrete
	probabilities,
	conditional
	probabilities, random
	variables and
	expectation,
	recurrence relations,
	generating functions,
	-
	graphs, trees, Boolean
	algebra
	MATH 2861 –
	Topics include:
	definition of functions,
	historical evolutions of
	functions, basic
	machinery of
	functions, properties of
	real functions,
	problems involving
	real functions, concept
1	iour runotions, concept

	of equation, algebraic
	structures and solving
	equations, the solving
	process, congruence,
	Euclid and
	congruence, the
	congruence
	transformations,
	symmetry, distance,
	similar figures,
	distances within
	figures, trigonometry,
	angle measure and the
	trigonometric ratios,
	the trigonometric
	functions and their
	connections, properties
	of the sine and cosine
	functions
	MATH 2862 –
	Topics include: direct
	proof, proof by
	contradiction, proof by
	counterexample, proof
	by induction,
	similarity, area of
	simple figures, the
	circle, areas of
	irregular shapes,
	volume, geometric
	transformations,
	functions, the matrix
	approach,
	transforming areas,
	transformations in
	three dimensions, laws
	of sine and cosine,
	similarity, Heron's
	Theorem, right triangle
	trigonometry, radian
	measure, graphing
	trigonometric curves,
	modeling with
	trigonometric
	functions, inverse
	trigonometric

I	
	functions,
	trigonometric
	identities, vectors,
	introduction to non-
	Euclidean geometry,
	the Parallel Postulate,
	undefined terms
	MATH 3710 -
	Topics include: vector
	and matrix algebra, the
	solution of systems of
	equations, the inverse
	of a square matrix,
	determinants,
	definition and basic
	properties of
	determinants,
	e
	applications of the determinant,
	introduction to Vector
	Space, definition and
	terminology of vector
	spaces, basis and
	dimension of a vector
	space, the kernel,
	nullity and rank of a
	matrix, linear
	transformations,
	definition of linear
	transformation and the
	concept of isomorphic
	vector space, the
	kernel and range of a
	linear transformation,
	the transformation
	matrix of a linear
	transformation, vector
	space isomorphism,
	characterization of
	finite dimensional
	vector spaces, the
	characteristic
	polynomial of a
	matrix, definition of
	eigenvalues and
	eigenvectors,
	eigenvectors,

			applications of eigenvalues and eigenvectors MATH 4233 – Topics include: early numeration systems, Babylonian and Egyptian mathematics, Greek mathematicians up to Euclid, Greek mathematicians beyond Euclid, Euclidean geometry, Chinese mathematics, Hindu mathematics, Arabian mathematics, European mathematics, modern mathematics
A.2. Algebra To be prepared to develop student mathematical proficiency, all secondary mathematics teachers should know the following topics related to algebra with their content understanding and mathematical practices supported by appropriate technology and varied representational tools, including concrete models:	Required Course Number(s) and Name(s)	Technology and Representational Tools Including Concrete Models by Competency	Course Description(s)
A.2.1 Algebraic notation, symbols, expressions, equations, inequalities, and proportional	MATH 2861 - Advanced Perspectives on	GeoGebra software, graphing	MATH 1151 – Topics include: limits and continuity finding

A	.2.1 Algebraic notation,	MATH 2001 -	GeoGeora	МАТП 1131 -
sy	mbols, expressions, equations,	Advanced	software,	Topics include: limits
in	equalities, and proportional	Perspectives on	graphing	and continuity, finding
re	lationships, and their use in	High School	calculators,	limits and formal
de	escribing, interpreting,	Mathematics	algebra tiles,	definitions of limits,
m	odeling, generalizing, and	MATH 1151 -	NCTM	one-sided and infinite
ju	stifying relationships and	Calculus and	Illuminations, and	
op	perations	Analytic Geometry I	function modeling	limits, derivative, the
A	.2.2 Function classes	MATH 1151 -	Graphing	derivative of a function
in	cluding polynomial,	Calculus and	calculators,	and tangent lines,
	ponential and logarithmic,	Analytic Geometry I	spaghetti models	differentiation rules,
	osolute value, rational,	MATH 1152 -	of functions	rates of change,
tri	gonometric, including those	Calculus and		derivatives of
w	ith discrete domains (e.g.,	Analytic Geometry		trigonometric
	quences), and how the choices	II		functions,
	parameters determine	MATH 2861 –		

particular cases and model specific situationsA.2.3 Functional representations (tables, graphs, equations, descriptions, recursive definitions, and finite differences), characteristics (e.g., zeros, intervals of increase or decrease, extrema, average rates of change, domain and range, and end behavior), and notations as a means to describe, reason, interpret, and analyze relationships and to build new functions	Advanced Perspectives on High School Mathematics MATH 1151 - Calculus and Analytic Geometry I MATH 1152 - Calculus and Analytic Geometry II MATH 2861 – Advanced Perspectives on High School Mathematics	Graphing calculators, GeoGebra, NCTM Core Math Tools	differentiation of composite and implicit functions, differentiation of rational powers of functions, related rates, applications of derivative, extreme values of functions the Mean Value Theorem, the first derivative test, limits at infinity and asymptotes of a graph, optimization and differentials,	
functions A.2.4 Patterns of change in linear, quadratic, polynomial, and exponential functions and in proportional and inversely proportional relationships and types of real-world relationships these functions can model	MATH 1151 - Calculus and Analytic Geometry I MATH 1152 – Calculus and Analytic Geometry II MATH 2861 – Advanced Perspectives on High School Mathematics	Graphing Calculators, GeoGebra, motion detectors	integration, indefinite integrals and differential equations, integration by substitution, the definite integral, properties of definite integral, applications to area, the Fundamental Theorem of Calculus, substitution in definite	
A.2.5 Linear algebra including vectors, matrices, and transformations	MATH 371 0 - Linear Algebra	Graphing calculators, iPads	integrals and numerical integration, inverse	
A.2.6 Abstract algebra, including groups, rings, and fields, and the relationship between these structures and formal structures for number systems and numerical and symbolic calculations	MATH 4710 - Algebraic Structures	Computer Algebra System – MATLAB or SAGE	functions and their derivatives, natural logarithm function, natural exponential functions, growth and decay, inverse trigonometric	derivatives, natural logarithm function, natural exponential functions, growth and decay, inverse trigonometric
A.2.7 Historical development and perspectives of algebra including contributions of significant figures and diverse cultures	MATH 4233 - Scientific, Historical, and Sociological Impact of Mathematics	A variety of internet sources, power point for student presentations, YouTube videos to illustrate concepts	functions, hyperbolic functions, applications of integrals, areas between curves, volumes of solids of revolution, finding volumes by slicing, arc length, areas of surfaces of revolution and work, moments	

	and centers of mass
	MATH 1152 –
	Topics include:
	techniques of
	integration (by parts,
	by trigonometric
	substitution, of powers
	of trigonometric
	functions, of rational
	functions by partial
	fractions, improper
	integrals), sequences
	and convergence of
	sequences, bounded
	sequences and
	monotonic sequences,
	infinite series of
	positive terms,
	alternating series and
	their convergence,
	absolute and
	conditional
	convergence of series,
	the integral test, root
	test, ratio test,
	introduction to power
	series, differentiation
	and integration of
	power series, Taylor's
	series, binomial series,
	conic sections,
	quadratic equations,
	rotations, classifying
	conic sections by
	eccentricity,
	parametrizations of
	plane curves and
	calculus of
	parametrized curves,
	polar coordinates and
	graphing in polar
	coordinates, polar
	equations for conic
	sections, integration in
	polar coordinates,
	vectors in three

	dimensional space and
	solid geometry, vectors
	in the plane, vectors in
	space, dot products and
	cross products, lines
	and planes in space,
	cylinders and quadratic
	surfaces, cylindrical
	and spherical
	coordinates, vector-
	valued functions and
	space curves, unit
	-
	tangent and unit
	normal vectors, arc
	length as the parameter
	for curves, curvature,
	torsion, TNB frame,
	plane motion
	MATH 2861 – Topics
	include: definition of
	functions, historical
	evolutions of
	functions, basic
	machinery of
	functions, properties of
	real functions,
	problems involving
	real functions, concept
	of equation, algebraic
	structures and solving
	equations, the solving
	process, congruence,
	Euclid and
	congruence, the
	congruence
	transformations,
	symmetry, distance,
	similar figures,
	distances within
	figures, trigonometry,
	angle measure and the
	trigonometric ratios,
	the trigonometric
	functions and their
	connections, properties
	of the sine and cosine

	functions
	MATH 3710 – Topics
	include: vector and
	matrix algebra, the
	solution of systems of
	equations, the inverse
	of a square matrix,
	determinants,
	definition and basic
	properties of
	determinants,
	applications of the
	determinant,
	introduction to Vector
	Space, definition and
	terminology of vector
	spaces, basis and
	dimension of a vector
	space, the kernel,
	nullity and rank of a
	matrix, linear
	transformations,
	definition of linear
	transformation and the
	concept of isomorphic
	vector space, the
	kernel and range of a
	linear transformation,
	the transformation
	matrix of a linear
	transformation, vector
	space isomorphism,
	characterization of
	finite dimensional
	vector spaces, the
	characteristic
	polynomial of a
	1 5
	matrix, definition of
	eigenvalues and
	eigenvectors,
	applications of
	eigenvalues and
	eigenvectors
	MATH 4233 –
	Topics include: early
	numeration systems,

A.3. Geometry and Trigonometry To be prepared to develop student mathematical proficiency, all secondary	Technology and	
		Babylonian and Egyptian mathematics, Greek mathematician up to Euclid, Greek mathematicians beyond Euclid, Euclidean geometry, Chinese mathematics, Hindu mathematics, Arabian mathematics, European mathematics, European mathematics MATH 4710 – Topics include: group theory, abstract groups, cyclic groups, modular groups, symmetric groups, dihedral groups, groups of isometries, matrix groups, subgroups, normality, Lagrange's Theorem, quotient groups, homomorphisms, the First Isomorphism Theorem, rings, fields, abstract rings, integers and extensions, polynomials rings, ideals, quotient rings, unique factorization, number theory, group actions, finite fields

To be prepared to develop student mathematical proficiency, all secondary mathematics teachers should know the following topics related to geometry and trigonometry with their content understanding and mathematical practices supported by appropriate technology and	Required Course Number(s) and Name(s)	Technology and Representational Tools Including Concrete Models by Competency	Course Description(s)
---	---	---	-----------------------

14

variad representational tools			
varied representational tools,			
including concrete models:	MATH 2221 –	Drograma anal a-	MATH 1151
A.3.1 Core concepts and		Programs such as	MATH 1151 –
principles of Euclidean in two	Foundations of	GeoGebra,	Topics include: limits
and three dimensions and two-	Geometry	Geometer's	and continuity, finding
dimensional non-Euclidean	MATH 2862 –	Sketchpad, NCTM	limits and formal
geometries	Advanced	Core Math Tools.	definitions of limits,
	Perspectives on	Surfaces such as	one-sided and infinite
	Secondary	doughnuts, cones,	limits, derivative, the
	Geometry and	hubcaps,	derivative of a
	Trigonometry	Hershey's Kisses	function and tangent
		for creating and	lines, differentiation
		analyzing	-
		properties of	rules, rates of change,
		geometric systems	derivatives of
A.3.2 Transformations	MATH 2221 –	Programs such as	trigonometric
including dilations, translations,	Foundations of	GeoGebra,	functions,
rotations, reflections, glide	Geometry MATH 2862 –	Geometer's	differentiation of
reflections; compositions of	Advanced	Sketchpad, NCTM Core Math Tools.	composite and implicit
transformations; and the		Core Main 1001s.	functions,
expression of symmetry in terms of transformations	Perspectives on Secondary		differentiation of
terms of transformations	Geometry and		rational powers of
	Trigonometry		functions, related
	MATH 2861 –		rates, applications of
	Advanced		derivative, extreme
	Perspectives on		values of functions the
	High School		Mean Value Theorem,
	Mathematics		the first derivative test,
A.3.3 Congruence, similarity	MATH 2221 –	Programs such as	-
and scaling, and their	Foundations of	GeoGebra,	limits at infinity and
development and expression in	Geometry	Geometer's	asymptotes of a graph,
terms of transformations	MATH 2862 –	Sketchpad, NCTM	optimization and
	Advanced	Core Math Tools,	differentials,
	Perspectives on	iPads Apps,	integration, indefinite
	Secondary	videos from	integrals and
	Geometry and	Project	differential equations,
	Trigonometry	Mathematics	integration by
A.3.4 Right triangles and	MATH 1151 -	Programs such as	substitution, the
trigonometry	Calculus and	GeoGebra,	definite integral,
	Analytic Geometry I	Geometer's	properties of definite
	MATH 2221 –	Sketchpad, NCTM	integral, applications
	Foundations of	Core Math Tools,	to area, the
	Geometry	Cut the Knot	Fundamental Theorem
	MATH 2862 –	website	of Calculus,
	Advanced		substitution in definite
	Perspectives on		
	Secondary		integrals and
	Geometry and		numerical integration,
	Trigonometry		inverse functions and

	MATH 2861 –		their derivatives,
	Advanced		natural logarithm
	Perspectives on		function, natural
	High School		exponential functions,
	Mathematics		growth and decay,
A.3.5 Application of periodic	MATH 1151 -	Graphing	inverse trigonometric
phenomena and trigonometric	Calculus and	calculators	
identities	Analytic Geometry I		functions, hyperbolic
	MATH 2862 –		functions, applications
	Advanced		of integrals, areas
	Perspectives on		between curves,
	Secondary		volumes of solids of
	Geometry and		revolution, finding
	Trigonometry		volumes by slicing, arc
A.3.6 Identification,	MATH 2221 –	Programs such as	length, areas of
classification into categories,	Foundations of	GeoGebra,	surfaces of revolution
visualization, and representation	Geometry	Geometer's	
of two- and three-dimensional	MATH 2862 –	Sketchpad, NCTM	and work, moments
objects (triangles,	Advanced	Core Math Tools,	and centers of mass
quadrilaterals, regular polygons,	Perspectives on	Concrete models	MATH 1152 –
prisms, pyramids, cones,	Secondary	of two- and three-	Topics include:
cylinders, and spheres)	Geometry and	dimensional	techniques of
- y ,	Trigonometry	objects and	integration (by parts,
	8	geoboards	by trigonometric
A.3.7 Formula rationale and	MATH 1151 -	Graphing	substitution, of powers
derivation (perimeter, area,	Calculus and	calculators	of trigonometric
surface area, and volume) of	Analytic Geometry I		functions, of rational
two- and three-dimensional	MATH 1152 -		functions by partial
objects (triangles,	Calculus and		
quadrilaterals, regular polygons,	Analytic Geometry		fractions, improper
rectangular prisms, pyramids,	II		integrals), sequences
cones, cylinders, and spheres),	MATH 2862 –		and convergence of
with attention to units, unit	Advanced		sequences, bounded
comparison, and the iteration,	Perspectives on		sequences and
additivity, and invariance	Secondary		monotonic sequences,
related to measurements	Geometry and		infinite series of
	Trigonometry		positive terms,
A.3.8 Geometric	MATH 2221 –	Construction	alternating series and
constructions, axiomatic	Foundations of	tools, Programs	their convergence,
reasoning, and proof	Geometry	such as GeoGebra,	absolute and
6,	MATH 2862 –	Geometer's	conditional
	Advanced	Sketchpad, NCTM	
	Perspectives on	Core Math Tools,	convergence of series,
	Secondary	Proof puzzles	the integral test, root
	Geometry and	L	test, ratio test,
	Trigonometry		introduction to power
A.3.9 Analytic and coordinate	MATH 1152 -	Surfaces such as	series, differentiation
geometry including algebraic	Calculus and	doughnuts, cones,	and integration of
proofs (e.g., the Pythagorean	Analytic Geometry	hubcaps,	power series, Taylor's
Theorem and its converse) and	II	Hershey's Kisses	series, binomial series,
interior and its converse, and		10101109 0 1110000	

equations of lines and planes, and expressing geometric properties of conic sections with equations	MATH 2221 – Foundations of Geometry	for creating and analyzing properties of geometric systems, Cut the Knot website	conic sections, quadratic equations, rotations, classifying conic sections by eccentricity, parametrizations of
A.3.10 Historical development and perspectives of geometry and trigonometry including contributions of significant figures and diverse cultures	MATH 4233 - Scientific, Historical, and Sociological Impact of Mathematics	A variety of internet sources, power point for student presentations, YouTube videos to illustrate concepts	parametrizations of plane curves and calculus of parametrized curves, polar coordinates and graphing in polar coordinates, polar equations for conic sections, integration in polar coordinates, vectors in three dimensional space and solid geometry, vectors in the plane, vectors in space, dot products and cross products, lines and planes in space, cylinders and quadratic surfaces, cylindrical and spherical coordinates, vector-valued functions and space curves, unit tangent and unit normal vectors, arc length as the parameter for curves, curvature, torsion, TNB frame, plane motion MATH 2861 – Topics include: definition of functions, historical evolutions of functions, basic machinery of functions, properties of real functions, problems involving real functions, concept

	of equation, algebraic
	structures and solving
	equations, the solving
	process, congruence,
	Euclid and
	congruence, the
	congruence
	transformations,
	symmetry, distance,
	similar figures,
	distances within
	figures, trigonometry,
	angle measure and the
	trigonometric ratios,
	the trigonometric
	functions and their
	connections, properties
	of the sine and cosine
	functions
	MATH 2221-
	Topics include:
	axioms and postulates
	in geometry, role of
	definitions, role of
	axioms, role of
	postulates, axioms of
	connection, axioms of
	betweeness, axioms of
	congruence, axioms of
	continuity, types and
	formats of proofs,
	validity of
	propositions in
	Euclid's Elements,
	equivalent and
	alternate forms of
	Euclid's fifth
	postulate, similarity,
	Euclidean results
	concerning circles,
	Euclidean results
	concerning triangles,
	constructions in
	Euclidean geometry,
	philosophy of
	construction, basic

	constructions in
	Euclidean geometry
	MATH 2862 –
	Topics include: direct
	proof, proof by
	contradiction, proof by
	counterexample, proof
	by induction, area of
	simple figures, the
	circle, areas of
	-
	irregular shapes,
	volume, geometric
	transformations,
	functions, the matrix
	approach,
	transforming areas,
	transformations in
	three dimensions, laws
	of sine and cosine,
	similarity, Heron's
	Theorem, right
	triangle trigonometry,
	radian measure,
	graphing trigonometric
	curves, modeling with
	trigonometric
	functions, inverse
	trigonometric
	functions,
	trigonometric
	identities, vectors,
	introduction to non-
	Euclidean geometry,
	the Parallel Postulate,
	undefined terms
	MATH 4233 –
	Topics include: early
	numeration systems,
	Babylonian and
	Egyptian mathematics,
	Greek mathematician
	up to Euclid, Greek
	mathematicians
	beyond Euclid,
	Euclidean geometry,
	Chinese mathematics,
	Chinese mathematics,

			Hindu mathematics, Arabian mathematics, European mathematics, modern mathematics
A.4. Statistics and Probability To be prepared to develop student mathematical proficiency, all secondary mathematics teachers should know the following topics related to statistics and probability with their content understanding and mathematical practices supported by appropriate technology and varied representational tools, including concrete models:	Required Course Number(s) and Name(s)	Technology and Representational Tools Including Concrete Models by Competency	Course Description(s)
A.4.1 Statistical variability and its sources and the role of randomness in statistical inference	MATH 4851 - Probability and Statistics for Middle/High School Mathematics	Tinkerplots software, Graphing calculators	MATH 4851 – Topics include: theoretical probability, empirical probability, simulation, fundamental elements
A.4.2 Creation and implementation of surveys and investigations using sampling methods and statistical designs, statistical inference (estimation of population parameters and hypotheses testing), justification of conclusions, and generalization of results	MATH 4851 - Probability and Statistics for Middle/High School Mathematics	Microsoft Excel, graphing calculators, power point for student presentations	of statistics, uses and misuses of statistics, designing and conducting surveys, sampling methods, organizing and representing data, histograms, frequency
A.4.3 Univariate and bivariate data distributions for categorical data and for discrete and continuous random variables, including representations, construction and interpretation of graphical displays (e.g., box plots, histograms, cumulative frequency plots, scatter plots), summary measures, and comparisons of distributions	MATH 4851 - Probability and Statistics for Middle/High School Mathematics	Tinkerplots software, graphing calculators, Microsoft Excel, measurement tools	polygons, stem and leaf, box plots, scatter plots, frequency plots, univariate and bivariate data distributions, measures of central tendency, measures of dispersion, standard deviation, percentiles,
A.4.4 Empirical and theoretical probability (discrete, continuous, and conditional) for both simple and compound events	MATH 4851 - Probability and Statistics for Middle/High School Mathematics	Concrete materials such as cubes, pennies, spinners, etc are used to investigate probability,	standard scores, correlation, regression, curve fitting, basics of probability (experiment, outcome,

A.4.5 Random (chance) phenomena, simulations, and probability distributions and their application as models of real phenomena and to decision making A.4.6 Historical development and perspectives of statistics and probability including contributions of significant figures and diverse cultures	MATH 4851 - Probability and Statistics for Middle/High School Mathematics MATH 4233 - Scientific, Historical, and Sociological Impact of Mathematics	GeoGebra, NCTM Core Math Tools Graphing calculators, concrete models used in simulations, Minitab software A variety of internet sources, power point for student presentations, YouTube videos to illustrate concepts	sample space, event), counting techniques (permutation, combinations), rules of probability, conditional probability, independent events, Bayes theorem, tree diagram, contingency tables, probability distributions (binomial, normal, normal approximations), discrete random variables, probability distribution functions, continuous random variable, chi square distributions, sampling and sampling distributions, Central Limit theorem, estimation of population mean, confidence intervals, hypothesis testing MATH 4233 – Topics include: early numeration systems, Babylonian and Egyptian mathematics, Greek mathematician up to Euclid, Greek mathematicians beyond Euclid, Chinese mathematics, Hindu mathematics, European mathematics, European mathematics, modern mathematics
A.5. Calculus To be prepared to develop student mathematical proficiency, all secondary mathematics teachers should know the following topics	Required Course Number(s) and Name(s)	Technology and Representational Tools Including Concrete Models by Competency	Course Description(s)

know the following topics

related to calculus with their content understanding and mathematical practices supported by appropriate technology and varied			
representational tools, including concrete models:			
A.5.1 Limits, continuity, rates of change, the Fundamental Theorem of Calculus, and the meanings and techniques of differentiation and integration	MATH 1151 – Calculus and Analytic Geometry I	Graphing calculators, Calculus in Motion software using Geometer's Sketchpad	MATH 1151 – Topics include: limits and continuity, finding limits and formal definitions of limits,
A.5.2 Parametric, polar, and vector functions	MATH 1152 – Calculus and Analytic Geometry II	Graphing calculators	one-sided and infinite limits, derivative, the derivative of a function and tangent
A.5.3 Sequences and series	MATH 1152 – Calculus and Analytic Geometry II	Graphing calculators	lines, differentiation rules, rates of change, derivatives of trigonometric
A.5.4 Multivariate functions	MATH 1152 – Calculus and Analytic Geometry II	Graphing calculators	functions, differentiation of composite and implicit functions,
A.5.5 Applications of function, geometry, and trigonometry concepts to solve problems involving calculus	MATH 1151 – Calculus and Analytic Geometry I MATH 1152 – Calculus and Analytic Geometry II MATH 2862 – Advance Perspectives on Secondary Geometry and Trigonometry MATH 4233 -	Graphing calculators, Calculus in Motion software using Geometer's Sketchpad	differentiation of rational powers of functions, related rates, applications of derivative, extreme values of functions the Mean Value Theorem, the first derivative test, limits at infinity and asymptotes of a graph, optimization and differentials,
A.5.6 Historical development and perspectives of calculus including contributions of significant figures and diverse cultures	MATH 4233 - Scientific, Historical, and Sociological Impact of Mathematics	A variety of internet sources, power point for student presentations, YouTube videos to illustrate concepts	integration, indefinite integrals and differential equations, integration by substitution, the definite integral, properties of definite integral, applications to area, the Fundamental Theorem of Calculus,

11	
	substitution in definite
	integrals and
	numerical integration,
	inverse functions and
	their derivatives,
	natural logarithm
	function, natural
	exponential functions,
	growth and decay,
	inverse trigonometric
	-
	functions, hyperbolic
	functions, applications
	of integrals, areas
	between curves,
	volumes of solids of
	revolution, finding
	volumes by slicing, arc
	length, areas of
	surfaces of revolution
	and work, moments
	and centers of mass
	MATH 1152 –
	Topics include:
	techniques of
	integration (by parts,
	by trigonometric
	substitution, of powers
	of trigonometric
	functions, of rational
	functions by partial
	fractions, improper
	· 1 1
	integrals), sequences
	and convergence of
	sequences, bounded
	sequences and
	monotonic sequences,
	infinite series of
	positive terms,
	alternating series and
	their convergence,
	absolute and
	conditional
	convergence of series,
	the integral test, root
	test, ratio test,
	introduction to power
1	introduction to power

series, differentiation and integration of power series, Taylor' series, binomial series conic sections, quadratic equations, rotations, classifying conic sections by eccentricity, parametrizations of plane curves and calculus of parametrized curves, polar coordinates and graphing in polar
power series, Taylor' series, binomial series conic sections, quadratic equations, rotations, classifying conic sections by eccentricity, parametrizations of plane curves and calculus of parametrized curves, polar coordinates and
power series, Taylor' series, binomial series conic sections, quadratic equations, rotations, classifying conic sections by eccentricity, parametrizations of plane curves and calculus of parametrized curves, polar coordinates and
series, binomial series, conic sections, quadratic equations, rotations, classifying conic sections by eccentricity, parametrizations of plane curves and calculus of parametrized curves, polar coordinates and
conic sections, quadratic equations, rotations, classifying conic sections by eccentricity, parametrizations of plane curves and calculus of parametrized curves, polar coordinates and
quadratic equations, rotations, classifying conic sections by eccentricity, parametrizations of plane curves and calculus of parametrized curves, polar coordinates and
rotations, classifying conic sections by eccentricity, parametrizations of plane curves and calculus of parametrized curves, polar coordinates and
conic sections by eccentricity, parametrizations of plane curves and calculus of parametrized curves, polar coordinates and
eccentricity, parametrizations of plane curves and calculus of parametrized curves, polar coordinates and
parametrizations of plane curves and calculus of parametrized curves, polar coordinates and
plane curves and calculus of parametrized curves, polar coordinates and
calculus of parametrized curves, polar coordinates and
parametrized curves, polar coordinates and
polar coordinates and
graphing in polar
coordinates, polar
equations for conic
sections, integration i
polar coordinates,
vectors in three
dimensional space an
solid geometry,
vectors in the plane,
vectors in space, dot
products and cross
products, lines and
planes in space,
cylinders and quadrat
surfaces, cylindrical
and spherical
coordinates, vector-
valued functions and
space curves, unit
tangent and unit
normal vectors, arc
length as the paramet
for curves, curvature,
torsion, TNB frame,
plane motion
MATH 4233 –
Topics include: early
numeration systems,
Babylonian and
Egyptian mathematic
Greek mathematician
up to Euclid, Greek

mathematicians
beyond Euclid,
Euclidean geometry,
Chinese mathematics,
Hindu mathematics,
Arabian mathematics,
European mathematics modern
mathematics, modern mathematics
MATH 2862 –
Topics include: direct
proof, proof by
contradiction, proof by
counterexample, proof
by induction, area of
simple figures, the
circle, areas of
irregular shapes,
volume, geometric
transformations,
functions, the matrix
approach, transforming
areas, transformations
in three dimensions,
laws of sine and
cosine, similarity,
Heron's Theorem,
right triangle
trigonometry, radian
measure, graphing
trigonometric curves,
modeling with
trigonometric
functions, inverse
trigonometric
functions,
trigonometric
identities, vectors,
introduction to non-
Euclidean geometry,
the Parallel Postulate,
undefined terms

mathematics teachers should know the following topics related to discrete mathematics with their content understanding and mathematical practices supported by appropriate technology and varied representational tools, including concrete models:		by Competency	
A.6.1 Discrete structures including sets, relations, functions, graphs, trees, and networks	MATH 2410 - Discrete Mathematics	Microsoft Excel - spreadsheet	MATH 2410 – Topics include: basic concepts of logic, direct proofs, proofs by
 A.6.2 Enumeration including permutations, combinations, iteration, recursion, and finite differences A.6.3 Propositional and predicate logic 	MATH 2410 - Discrete Mathematics MATH 2410 - Discrete Mathematics	Games and puzzles – Towers of Hanoi, Rubiks Cube, etc. None used	counterexample, proofs by contraposition, proofs by contradiction, constructive and nonconstructive
A.6.4 Applications of discrete structures such as modeling and solving linear programming problems and designing data structures	MATH 2410 - Discrete Mathematics	None used	proofs, mathematical induction, basic concepts of sets, set operations, Venn diagrams,
A.6.5 Historical development and perspectives of discrete mathematics including contributions of significant figures and diverse cultures	MATH 4233 - Scientific, Historical, and Sociological Impact of Mathematics	A variety of internet sources, power point for student presentations, YouTube videos to illustrate concepts	containments and equality, mappings and their properties, cardinality and countability, Cartesian products and relations, division algorithm, Euclidean algorithm, modular arithmetic, pigeonhole principle, permutations, combinations, binomial theorem and Pascal's triangle, the principle of inclusion- exclusion, discrete probabilities, conditional probabilities, random variables and expectation, recurrence relations, generating functions, graphs,

	trees, Boolean algebra,
	applications of discrete
	mathematics
	MATH 4233 –
	Topics include: early
	numeration systems,
	Babylonian and
	Egyptian mathematics,
	Greek mathematician
	up to Euclid, Greek
	mathematicians
	beyond Euclid,
	Euclidean geometry,
	Chinese mathematics,
	Hindu mathematics,
	Arabian mathematics,
	European mathematics,
	modern mathematics

Assessment #2 – Course Grades Page 6

ŧ

n kana ana a Alamana Alamana Part 3 – Institution Grading Policy From Undergraduate Catalog

Academic Standards

Grading System

Only grades A through F impact grade point average. The grading system used in evaluating a student's work is as follows:

- A-Work of marked excellence
- B Work of superior quality
- C Work of average quality
- D Work of minimal passing quality
- F-Failure to do work of passing quality
- CR* Credit for Official Certifications, Licenses, Diplomas, Military Credit, Validated Credit, and Work Experience (limited to 30 hours towards a degree)
- LD** Designates a Late Drop of a course (but not the entire semester schedule), granted for extenuating circumstances after the published last day to withdraw
- LW** Designates a Late Withdrawal of a complete semester's schedule, granted for extenuating circumstances after the published last day to withdraw
- NC No credit granted for course (audit)
- NR No grade reported by instructor
- P Work of passing quality in a-pass/fail course (limited to 9 hours towards a degree)
- SC* Credit by examination (AP/IB/CLEP), etc. (limited to 30 hours towards a degree)
- U Course not completed for justifiable reasons, students may not graduate with a U on their record
- W** Course dropped during withdrawal period
- * CR and SC credits do not count towards residency hours or upper-level hours requirements. Up to 30 hours of each type, CR and SC, may be applied to a degree program.
- ** For more information about withdrawal grades, refer to the section *Changes in Schedules*, and either the Calendar in this catalog or the *Student Planner/Handbook*. Course withdrawal and refund dates can also be found in MyCentral in the Student Services tab in the UCM Registration section under the link Check Refund and Withdrawal Dates.

Grade Point Averages

In order to receive a degree, a student must earn a minimum grade point average of 2.00 (C) in each of the following areas:

- 1. All work attempted (cumulative GPA, includes transfer work)
- 2. All work attempted at Central Missouri (UCM GPA)
- 3. All work taken to satisfy major requirements at UCM
- 4. All work taken to satisfy minor requirements at UCM

Students must review their degree and major program for all minimum GPA requirements. Several degree programs specify grade standards that may apply to acceptance into a program and/or that must be maintained for graduation from a program. Such special standards are listed under the major programs in the curriculum section of this catalog.

Computation of Grade Point Average

In order to compute grade point average, total quality points earned are divided by total hours attempted. Each semester hour is assigned a grade point value as indicated below:

- 1. Each semester hour of A is assigned 4 quality points.
- 2. Each semester hour of B is assigned 3 quality points.
- 3. Each semester hour of C is assigned 2 quality points.
- 4. Each semester hour of D is assigned 1 quality point.
- 5. Each semester hour of F is assigned 0 quality points.
- 6. Each semester hour of CR, LD, LW, P, SC, or W is not considered.
- Each semester hour of U and NR is not considered until a grade is assigned.

Academic Standing

Student academic standing is determined by both the cumulative GPA and the UCM GPA. Students can find their academic standing in MyCentral in the Student Services tab under "Check Your Registration Status" or "Unofficial Transcript".

8

8

Good Academic Standing

Central Missouri students who have both a 2.00 cumulative and UCM grade point average are in good academic standing and are eligible to enroll for classes.

Academic Probation

A student whose cumulative GPA or total UCM GPA drops below 2.00 will be placed on academic probation. New freshmen admitted to UCM as part of the Success Program are admitted on academic probation. A transfer student will be placed on academic probation at the time of admission if his/her cumulative GPA is less than 2.00. Students placed on academic probation may continue to enroll in classes. Students are encouraged to seek advice from their professional academic advisor about future enrollments. Students on academic probation may not enroll in more than 15 semester hours during any semester of academic probation.

Removal From Probation

A student placed on academic probation will continue on probation until the UCM GPA and the cumulative GPA are 2.00 or higher. When a student on academic probation raises their UCM GPA and their cumulative GPA to 2.00 or above, the student is removed from probation. Transfer credit may not be used to raise the UCM GPA.

Academic Suspension

A student on academic probation will be suspended from Central Missouri at the conclusion of his/her next semester/enrollment period if his/her semester/enrollment period GPA is less than 2.00. A transfer student who was admitted on probation will be suspended from Central Missouri at the conclusion of his/her first semester/ enrollment period if his/her semester/enrollment period GPA is less than 2.00. Academic suspension is for a period of one full semester (not including summer semester), after which students may petition for reinstatement. Reinstatement is not automatic nor guaranteed. International students must contact the International Center immediately upon suspension from the university.

Academic Dismissal

A student who has been suspended and later reinstated and continued on probation but does not achieve a semester GPA of 2.00 or higher in a subsequent semester/enrollment period will be dismissed. Academic dismissal is for a period of one calendar year, after which a student may petition for reinstatement. Reinstatement is not automatic nor guaranteed. International students must contact the International Center immediately upon dismissal from the university. **Reinstatement.** The reinstatement of students who have been suspended or dismissed from UCM is not automatic or guaranteed. Petitions for reinstatement are reviewed by the appropriate college or center based on the degree program a student has selected for reinstatement. Students in the Intensive English Program (IEP) who wish to petition for reinstatement must contact the English Language Center at iep@ucmo.edu.

The reinstatement petition can be accessed in MyCentral in the Student Services tab. For the best selection of courses, students should submit a petition in March for summer or fall semester reinstatement and in October for spring semester reinstatement. Petitions will be considered through the following deadlines:

> Fall semester: July 15 Spring semester: November 15 Summer semester: April 15

The petition includes a written portion which should include an explanation of the circumstances that led to poor academic performance and an explanation of activities and plans which may lead to improved academic performance in the future. Other substantiating evidence may also be requested. No additional application fee is required. Students must submit transcripts from all colleges attended that are not already on file with UCM. Failure to disclose a transcript may result in dismissal from UCM. After a review of the petition, academic records, and any other substantive evidence available, students will be notified of the reinstatement decision. Some colleges may require students to meet personally with a reinstatement review board.

Students may petition for reinstatement as follows:

- 1. Students who have been suspended may petition for reinstatement after sitting out one fall or spring semester (Summer Session does not count as a semester for suspension purposes). Students who have been dismissed may petition for reinstatement after one calendar year.
- 2. A student with documented extenuating circumstances who has been suspended or dismissed may petition for immediate (or early) reinstatement. Petitions for early reinstatement may not be submitted via MyCentral. Students seeking this should contact the dean of their college directly for consideration. Early reinstatement is rarely granted and only applies for extenuating circumstances for which supporting evidence can be provided.

Dean's List

8

To be eligible for the Dean's List, a student must be an undergraduate who earns 12 or more semester hours of residence credit during the fall or spring semesters with a grade point average for the semester of 3.50 or above. During the summer semester a student must be enrolled in nine or more semester hours and achieve a 3.50 or above grade point average.

Graduation with Honors

To be eligible for graduation with honors, a student must have earned both cumulative and Central Missouri grade point averages of 3.50. Those with cumulative and Central Missouri grade point averages of 3.50 to 3.74 graduate Cum Laude; 3.75 to 3.84, Magna Cum Laude; and 3.85 and above, Summa Cum Laude. Should the Central Missouri and cumulative GPAs be in different categories, the lower designation of honors will be recognized.

Grade Appeals

Students appealing a grade have one calendar year from the time the grade was issued to appeal any grade changes. These appeals should be directed to the instructor who taught the course in question. Please refer to the current *Grade Appeal Procedure* in the UCM *Student Planner/Handbook* for information regarding this procedure.

Grade Requirements for Program Admission and Graduation

In addition to the general requirements applicable to all areas, several academic programs specify grade standards that may apply to program admission and/or graduation from a program. Such special standards are listed under the major programs in the curriculum section of this catalog.

Unfinished Work

An instructor may report a semester grade of U when, for justifiable reasons, the student has not completed the work of the course. For example, if a student has an illness or death in the family during the last week of the course, an extension may be granted at the discretion of the instructor. At the end of the next semester (Fall, Spring or Summer) the U becomes an F unless the course requirements have been satisfactorily completed or the course is of an individualized nature, e.g., thesis, research report, or similar investigation. Students do not enroll in the class during the subsequent semester. Students having more than one U grade are expected to reduce their course load accordingly in order to complete the unfinished work. It is the student's responsibility to contact his/her instructor concerning the removal of the U grade. Students may not graduate with a U grade on their record. If the work is unable to be completed or the student does not wish to complete the work (in the case of an elective course), the grade will be changed to an F to meet graduation requirements.

Part 4 – Data Tables

Data Table A

*A = 4.0, B =		-	Second Undergr	ematics and ary Mathen aduate Prop	natics Educa		tion Course	25	
Course Number and Name	1	10 - 20		2011 - 2012			2012 - 2013		
	Mean Course Grade* and Range	Number of Completers	% of Completers Meeting Minimum Expectation (C or better)	Mean Course Grade* and Range	Number of Completers	% of Completers Meeting Minimum Expectation (C or better)	Mean Course Grade* and Range	Number of Completers	% of Completers Meeting Minimum Expectation (C or better)
Math 1151 Calculus and Analytic Geometry I	3.14 (2.0 – 4.0)	7	100%	3.4 (2.0 – 4.0)	5	100%	3.2 (2.0 – 4.0)	10	100%
Math 1152 Calculus and Analytic Geometry II	3.42 (2.0 - 4.0)	7	100%	2.8 (2.0 - 3.0)	5	100%	3.3 (2.0 – 4.0)	10	100%
Math 2221 Foundations of Geometry	3.0 (2.0 – 4.0)	7	100%	3.2 (3.0 - 4.0)	5	100%	3.1 (2.0 – 4.0)	10	100%
Math 2410 Discrete Mathematics	3.29 (2.0-4.0)	7	100%	3.0 (2.0 - 4.0)	5	100%	2.8 (2.0 - 4.0)	10	100%
Math 3710 Linear Algebra	3.14 (2.0 - 4.0)	7	100%	3.2 (2.0 - 4.0)	5	100%	3.0 (2.0 - 4.0)	10	100%
Math 4710 Algebraic Structures	$2.71 \\ (2.0 - 4.0)$	7	100%	2.6 (2.0 - 3.0)	5	100%	2.5 (2.0 - 4.0)	10	100%
Math 4851 Probability and Statistics	3.43 (2.0 - 4.0)	7	100%	3.8 (3.0- 4.0)	5	100%	3.8 (2.0 - 4.0)	10	100%
Math 2861 Advanced Perspectives on High School Mathematics	Not Requi	red during thi year.	s academic	3.33 (2.0 - 4.0)	5	100%	3.3 (2.0 – 4.0)	10	100%
ICAP 4233 he Scientific, Historical, and Sociological Impact of Mathematics	3.29 (2.0 - 4.0)	7	100%	4.0 (4.0)	5	100%	3.3 (3.0 - 4.0)	10	100%

.

Assessment #2 – Course Grades – Parts 3 and 4 Page 2

Data Table B

Mean GPA* in Required Mathematics Major Courses for Secondary Mathematics Education Completers Baccalaureate Program *A = 4.0, B = 3.0, C = 2.0, D = 1.0, F = 0							
Academic YearMean GPA* and RangeNumber of Completers% of CompletersRangeExpectation							
2010-2011	3.22 (2.32 - 4.0)		100%				
2011 - 2012	3.22 (2.93 – 3.65)		100%				
2012 - 2013	$3.18 \\ (2.10 - 4.0)$		100%				