Description of Assessment 2 Grade Point Averages in math courses required of all candidates

1. Narrative

1a. Description of assessment.

Candidates' grade point averages of courses required of all candidates in the MAT program are being used for assessment 2. All of the candidates in our MAT program seek certification in Adolescence Education: Mathematics (grades 7 - 12).

It is important to note that until the Spring semester of 2013, when the new Program Coordinator assembled a 3-member MAT admissions committee (two members of the mathematics department and the Coordinator, herself), that an official protocol for admitting candidates to the MAT Program was established. This protocol includes establishing what undergraduate mathematics courses potential candidates have to take before being admitted to our program. The required prerequisite undergraduate courses are as follows: courses equivalent to our Calculus and Analytical Geometry 1, 2, and 3 (MA2310, MA2320, MA3330, respectively), Discrete Mathematics (MA3030), Linear Algebra (MA3160), and Introduction to Probability & Statistics (MA3210).

Twelve courses are *required* of all candidates in the MAT program: 6 graduate courses and the 6 prerequisite undergraduate courses identified by the MAT admissions committee. Since the 11 program completers reported here were admitted to the program before Spring of 2013, we do not have their individual grades for the 6 prerequisite undergraduate courses.

As stated in the School of Education Graduate Catalog

(http://www.oldwestbury.edu/sites/default/files/documents/Graduate-Education-Catalog-2010-13.pdf), the SOE uses a 14 letter-grade system consisting of A, A-, B+, B, B-, C+, C, C-, F, CR (credit), NC (no credit), I (incomplete), W (withdrawal), and NR (not reported). All grades with the exception of CR, NC, I, W, and NR are calculated in candidates' respective GPAs. Grade points awarded for each grade can be found in section 2f. When a candidate repeats a course, if the new grade is higher, it replaces the old grade in the GPA computation. All grades, however, remain on the student's transcript. Grades for courses that were taken at another institution are accepted as transfer grades if and only if the college has found those courses to be equivalent to Old Westbury courses. Transfer grades are included in the GPA computation for this report.

Mathematics department policy dictates that grades of C- or lower earned in required courses do not satisfy degree requirements. For this reason, all program completers have earned at least a C in their required courses. For the candidates whose data is being used for this report, this means graduate courses only. In future reports this policy will include both the 6 graduate mathematics courses and the 6 prerequisite undergraduate mathematics courses.

1b. Alignment between the Assessment 2 and the NCTM CAEP 2012 Content Standards.

A course-by-course alignment between course alignment and the content standards was identified by a committee consisting of four faculty members: the mathematics department chair, two full-time mathematics professors, and the coordinator for the Adolescence Education: Mathematics Program, who is both a member of the School of Education and the mathematics department. A table identifying the alignment can be found in Appendix A at the end of this document.

1c. Analysis of data findings.

Grades were obtained from an examination of each candidate's transcript. GPAs were computed separately using only those courses required of all candidates per SPA requirement.

Our first cohort of program completers graduated in Spring 2012.

1d. Interpretation of data.

Course GPA and corresponding grade distribution are summarized in the tables found in section 2g. Numerically speaking, the ranges of course GPAs show an increase from the 2011 - 2012 program completers (Group 1; 2.7 to 3.85) to the 2012 - 2013 program completers (Group 2; 3.42 to 4.0) and then a decrease for the 2013 - 2014 program completers (Group 3: 2.57 - 3.67). With the exception of MA6100 (Probability and Statistics) for which the course GPA dropped (3.5 to 3.42 to 3.07), all required courses reflect the same increase then decrease pattern for the three groups of program completers. The averages GPA of candidates in the three years of data being reported are all above 3.0.

The small numbers of program completers (i.e., 2, 6, and 3 respectively) make interpretation of the data difficult.

2. Assessment Documentation

2e. Assessment tool.

Grade point averages of mathematics courses required to earn an MAT degree. Grades are obtained from an examination of each candidate's transcript(s).

Courses taken by candidates as part of the MAT program:

MA6100 – Probability & Statistics

MA6150 – Geometry

MA6200 – Algebra

MA6250 – Analysis

MA6400 - Topics in Adv. Mathematics and Technology

MA7500 – Topics in Mathematics and Mathematics Education

Courses equivalent to the following undergraduate mathematics courses taken before

being admitted to the MAT program:

MA2310 – Calculus & Analytic Geometry 1 MA2320 – Calculus & Analytic Geometry 2 MA3030 – Discrete Mathematics MA3160 – Linear Algebra MA3210 – Introduction to Probability & Statistics MA3330 – Calculus & Analytic Geometry 3

f. Scoring guide.

Each semester grade is determined by the corresponding professor as described by the course syllabus. Grade point awards are determined by the college and are as follows:

$$\begin{array}{ccc} B+=3.5 & C+=2.5 \\ A=4.0 & B=3.0 & C=2 & F=0 \\ A-=3.7 & B-=2.7 & C-=1.7 \end{array}$$

2g. Candidate data derived from Assessment 2. Table 1. Mean scores by course over 3 years

Grades * in Required in Mathematics and/or Mathematics Education Courses Adolescence Education: Mathematics 7-12									
	MAT Program Completers								
*A = 4.0, A- =	= 3.7, B + = 3.	.5, B = 3.0, B	-=2.7, C+=2	2.5, C = 2.0, C	C = 1.7, F = 0)			
		2011-2012			2012-2013			2013-2014	
Course Number and Name	Mean Course Grade* and (Range)	Number of Completers	% of Completers Meeting Minimum Expectation	Mean Course Grade* and (Range)	Number of Completers	% of Completers Meeting Minimum Expectation	Mean Course Grade* and (Range)	Number of Completers	% of Completers Meeting Minimum Expectation
MA6100 Probability & Statistics	3.5 (3.5 – 3.5)		100	3.42 (3.0 – 4.0)		100	3.07 (2.7 – 3.5)		100
MA6150 Geometry	3.85 (3.7 – 4.0)		100	3.95 (3.7 – 4.0)		100	3.67 (3.0 - 4.0)		100
MA6200 Algebra	2.7 (2.7 – 2.7)		100	3.73 (3.0 – 4.0)		100	2.57 (2.0 - 3.0)		100
MA6250 Analysis	2.85 (2.7 – 3.0)		100	3.61 (3.0 – 4.0)		100	3.57 (3.0 – 4.0)		100
MA6400 Topics in Adv. Math and Technology	3.0 (3.0 - 3.0)	•	100	3.75 (3.0 – 4.0)	B	100	3.5 (3.0 – 4.0)	•	100
MA7500 Topics in Mathematics and Mathematics Education	2.75 (2.5 - 3.0)		100	4.0 (4.0 – 4.0)		100	3.23 (2.0 - 4.0)		100

Table 2. Mean GPA by academic year

Mean GPA * in Required in Mathematics and/or Mathematics Education Courses					
	Adolescence Education: Mathematics 7-12				
	MAT Program	m Completers			
*A = 4.0, A- = 3.7, B+ = 3.3, B =	= 3.0, B = 2.7, C = 2.3, C = 2.0, C =	C = 1.7, F = 0			
Academic Year	Mean GPA* and (Range)	Number of Completers	% of Completers Meeting Minimum Expectation		
2011 - 2012	3.11 (3.02 – 3.20)		100		
2012 - 2013	3.80 (3.5 - 4.0)		100		
2013 - 2014	3.27 (3.02 - 3.7)		100		

Appendix A Course Alignments

NCTM Standard	Course Number	Course Components Addressing Cited
Elements Addressed by	and Name	Standard Elements
Course(s)		
1a) Demonstrate and apply	MA2310 –	Refer to NCTM CAEP Mathematics
knowledge of major	Calculus and	Content for Secondary Alignment Table
mathematics concepts,	Analytical	attached to the program report.
algorithms, procedures,	Geometry1	
applications in varied	MA2320 –	
contexts, and connections	Calculus and	
within and among	Analytical	
mathematical domains	Geometry 2	
(Number, Algebra,	MA3160 – Linear	
Statistics, Probability	Algebra	
Calculus and Discrete	MA3030 – Discrete	
Mathematics) as outlined	Math	
in the NCTM NCATE	MA3330 –	
Mathematics Content for	Calculus and	
Secondary.	Analytical	
	Geometry 3	
	MA3210 –	
	Introduction to	
	Probability &	
	Statistics	
	MA6100 –	
	Probability &	
	Statistics	
	MA6150 –	
	Geometry	
	MA6200 – Algebra	
	MA6250 –	
	Analysis	
	MA6400 – Topics	
	in Adv.	
	Mathematics and	
	Technology	
	MA7500 – Topics	
	in Mathematics	
	and Mathematics	
	Education	

2a) Use problem solving to	MA3030 – Discrete	Candidates are introduced to proof
develop conceptual	Math	techniques (e.g., direct proof, proof by
understanding, make sense		induction, proof by contrapositive, and proof
of a wide variety of		by contradiction). Candidates are asked to
problems and persevere in		apply these proof methods in the context of a
solving them, apply and		number of contexts (e.g. number theory
adapt a variety of		sets) and as part of proposing and proving
strategies in solving		generalizations. Candidates are asked to
problems confronted		solve problems related to real world
within the field of		phenomena such as the use of graphs and
mathematics and other		trace in the study of scheduling problems and
contexts, and formulate		trees in the study of scheduling problems and
and test conjectures in		in transportation.
order to frame		
generalizations.	MA3160 – Linear	Candidates are given multiple opportunities
	Algebra	to solve problems and develop new problem
		solving strategies as they study two- and
		three-dimensional spaces in new contexts
		(e.g., matrices, systems of equation,
		determinants, vectors, and linear
		transformations). In this study they learn
		new learn representations (e.g., vectors as
		ordered pairs and vectors as matrices), and
		new procedures to solve problems.
	MA 6100 –	Candidates are asked to solve problems that
	Probability and	are set in real-world and other contexts that
	Statistics	require them to determine, for example,
		which distribution is required, and justify
		their choice of distribution.
	MA 6150 –	Use of software such as GeoGebra to may
	Geometry	sometimes help a student test conjectures and
		formulate a proof
		Candidates solve a wide variety of problems
		(i.e., homework exercises) in Euclidean
		geometry and this helps in understanding the
		concepts and techniques and theorems
	MA 6200 – Algebra	As part of this course, candidates "discover"
		properties of the number systems. They
		model these properties in numbers by
		creating abstract structures (rings and groups)
		that generalize properties. Candidates go on
		to prove that given abstract structures satisfy
		(or fail to satisfy) the list of properties (thus
		verifying that it is a group or ring).

	MA 6250 –	In Calculus and Analytical Geometry 1 & 2
	Analysis	candidates learned a non-rigorous version of
		limits. In this course they learn what limits
		are rigorously and what the Real Numbers
		are rigorously. Candidates study the axioms
		that define the number systems.
	MA 6400 – Topics	Candidates solve problems (abstract and real
	in Advanced	world) for which the use of technological
	Mathematics and	tools (e.g., Mathematica, Maple) play an
	Technology	important role in helping candidates to
		develop understandings of complex ideas.
		Using the tools candidates formulate and test
		conjectures on their way to solving problems.
2b) Reason abstractly,	MA3160 – Linear	Candidates study two- and three-dimensional
reflectively, and	Algebra	spaces in new contexts (e.g., matrices,
quantitatively with		systems of equation, determinants, vectors,
attention to units,		and linear transformations) and new
constructing viable		mathematical objects. They learn the
arguments and proofs, and		axiomatic definition of vector spaces, and
critiquing the reasoning of		thereby abstract certain properties of \mathbb{R}^{n} ;
others; represent and		candidates develop their mathematical
model generalizations		vocabulary to include terms such as
using mathematics;		subspace, basis, linearly independent; and
recognize structure and		candidates develop their understanding of
express regularity in		these concepts when they determine whether
patterns of mathematical		a specified set of vectors forms a subspace, or
reasoning; use multiple		basis, or is linearly independent, etc.
and describe mathematics:		Using the new mathematical objects (e.g.,
and utilize appropriate		matrices, vectors), candidates are given many
mathematical vocabulary		opportunities to reason abstractly and
and symbols to		quantitatively about 2- and 3-space.
communicate	MA 6100 –	As part of their study of mathematical laws
mathematical ideas to	Probability and	of random phenomena, expectation and
others.	Statistics	variance, probability distributions, candidates
		examine fundamental properties of
		Probability and asked to prove them.
	MA 6150 -	Candidates learn multiple approaches to
	Geometry	geometry - e.g. through an axiomatic way, or
		through a transformation-based way
		(Erlangen program).
		Candidates construct proofs of geometrical
		propositions and in doing so learn to reason
		abstractly, represent and model
		generalizations using mathematics

		Candidates are asked to share their proofs in class and provide feedback to their classmates
		classifiates.
	MA 6200 – Algebra	Candidates continue their study of abstract algebraic structures (e.g., groups, rings, Integral domains, and fields) at a more in- depth level. Working in these algebraic structures, candidates demonstrate their ability to reason abstractly and reflectively in a rigorous and formalized format by constructing rigorous proofs. Communication of their arguments/proofs is required to be written in correct logic and presented clearly and pracisaly. Candidates are often asked to
		share and provide feedback to their fellow
		classmates as proofs are shared and discussed
		in class.
	MA 6250 -	Candidates are introduced to rigorous real
	Analysis	analysis in this course. Candidates are
		formulate proofs of properties/theorems and
		communicate their proofs precisely and
		clearly in writing. Candidates are
		encouraged to share and discuss their proofs in class.
2c) Formulate, represent, analyze, and interpret mathematical models derived from real-world contexts or mathematical	MA2310 – Calculus and Analytical Geometry1	Candidates are asked to use model real-world situations using functions (e.g., polynomial, trigonometric, exponential, and logarithmic) and use to the derivative to optimize the given situation. Candidates are also given
problems.		functions and use the derivative to locate maximum/minimum points, zeroes, determine intervals of increase/decrease and intervals of positive/negative concavity.
	MA2320 – Calculus and Analytical Geometry 2	Candidates are asked to use integrals to model real-world situations using functions (e.g., polynomial, trigonometric, exponential, and logarithmic) and to compute areas of regions and volumes of solids. Candidates use integration techniques to solve problems set in real-world contexts (e.g., finance, resource consumption, density).
	MA3330 – Calculus	As candidates in MA3330 learn the
	and Analytical	techniques of multivariable calculus, ideas
	Geometry 5	trajectories through space and basic problems

		in physics. Candidates apply later techniques
		in vector fields to model problems in fluid
		flow and force fields
	MA 6100 -	Applying probability models to real world
	Probability and	situations is an emphasis of the course. Some
	Statistics	models include wait times (Poisson
	Statistics	Distribution) life expectancy (Exponential
		Distribution), the expectate y (Exponential
		Distribution, survey results (Dinomial
	MA 6150 -	Candidates study projective geometry, which
	Geometry	is a mathematical model derived from the
	Geometry	study of perspective in art and Euclidean
		geometry which is also derived from real
		word context. As part of this study they
		asked to solve problems in these geometries
		as next of proving propositions/proportion
	MA 6400 Tarica	The topics years from competents competents.
	$\frac{1}{1000} = 10000000000000000000000000000000$	where there are two elements. One is a
	In Advanced	tachnological tool such as Manle on SAS
		Condidates are solved to solve real
	rechnology	Calculates are asked to solve real-
		wond/realistic problems who complexities
		them in analysis intermenting and/on
		them in analysis, interpreting and/or
	NA (100	representation.
2d) Organize mathematical	MA 6100 -	Candidates are required to solve problems
thinking and use the	Probability and	and to formulate and write proofs of
to express ideas presisely	Statistics	properties/theorems in the fields of
both orally and in writing		probability and statistics. Candidates are
to multiple audiences		required to express their ideas using the
to multiple addiences.		language of mathematics in their proofs and
		in class discussions of mathematical ideas
		being examined in the each lesson.
	MA 6150 -	Candidates are required to solve problems
	Geometry	and to formulate and write proofs of
		properties/theorems in the different
		geometries they study in this course (e.g.,
		projective, hyperbolic, Euclidean).
		Candidates are required to express their ideas
		using the language of mathematics in their
		proofs and in class discussions of
		mathematical ideas being examined in the
		each lesson.
	MA 6200 – Algebra	Candidates are required to solve problems
		and to formulate and write proofs of
		properties/theorems in the algebra.
		Candidates are required to express their ideas

		using the language of mathematics in their proofs and in class discussions of mathematical ideas being examined in the each lesson.
	MA 6250 – Analysis	Candidates are required to solve problems and to formulate and write proofs of properties/theorems in real analysis. Candidates are required to express their ideas using the language of mathematics in their proofs and in class discussions of mathematical ideas being examined in the each lesson.
	MA 6400 – Topics in Advanced Mathematics and Technology	Candidates are each required to do a project in this course in which he or she demonstrates a mathematical solution to a real-world problem using technology. Candidates' solutions to their problem are submitted in writing and shared with the class in a presentation.
	MA 7500 – Topics in Mathematics and Mathematics Education	Candidates are each required to do a project in this course on a topic taken from secondary mathematics. Candidates' write a paper on this topic and share their project with the class
2e) Demonstrate the interconnectedness of mathematical ideas and how they build on one another and recognize and apply mathematical	MA3030 – Discrete Math	Candidates are asked to draw upon their knowledge of school mathematics in conjunctions with understandings of ideas learned in their college courses (e.g., number theory, set theory, and calculus) to learn methods of proof and proving.
connections among mathematical ideas and across various content areas and real-world contexts.	MA3330 – Calculus and Analytical Geometry 3	Candidates combine their existing knowledge in 2- and 3-diemsnional geometry and trigonometry with the notions of single- variable calculus to develop dot- and cross- products, as well as techniques in multiple integration and differentiation, cumulating with the combined analytic and geometric approach to vector fields and the fundamental theorems of multivariable calculus (Green's theorem and the divergence theorem).
	MA 6100 - Probability and Statistics	Candidates are given multiple opportunities to make connections between ideas of Probability and Statistics and other areas of mathematics in their proofs of properties they encounter in this course. They use their understandings of series from Analysis, for

	example, in their proofs of properties of the
	Poisson Distribution or properties of the
	geometric distribution. The binomial
	formula, which candidates typically see as an
	algebraic topic is examined from the
	standpoint of probability.
MA 6150 –	Candidates are given multiple opportunities
Geometry	to make connections among the geometries
Scontery	they study in this course. For example, they
	examine inversive geometry is connected to
	complex numbers, and how that can be used
	to model hyperbolic geometry
	Starting from basic axioms of geometry
	starting from basic axions of geometry,
	on one another. Condidates demonstrate the
	interconnected need of they prove
	interconnectedness as they prove
MA (200 Alash	propositions that are new (to them).
MA 6200 – Algeb	ta mala as a segure introduction in a segure interesting in a segure interesting in a segure interesting in a segure interest in a segure interest in a segure interest in a segure interest int
	to make connections between ideas of
	Algebra and other areas of mathematics in
	their proofs of properties they encounter in
	this course. For example, they examine the
	space of functions or polynomials, a topic
	from Analysis, and show the space to be a
	group or a ring.
MA 6250 –	Candidates are given multiple opportunities
Analysis	to make connections between ideas of
	Analysis and other areas of mathematics in
	their proofs of properties they encounter in
	this course. The real numbers, for example,
	are defined and proven to be a field, a
	mathematical idea they study in Algebra.
MA 6400 – Topic	s Candidates are each required to do a project
in Advanced	in this course in which he or she
Mathematics and	demonstrates a mathematical solution to a
Technology	real-world problem using technology. As
	part of solving their selected problems,
	candidates have to make decisions about
	what field of mathematics and corresponding
	ideas/methods to use in their solution.
MA 7500 – Topic	s As part of this course, candidates study
in Mathematics ar	historical development of mathematics.
Mathematics	Using history as a lens, candidates examine
Education)	interconnectedness of the many fields.
MA 6200 – Algeb	ra Candidates are required to write proofs in this
	course Candidates use the mathematical

		practices of problem solving and reasoning as
		they formulate their proofs, and the
		connecting and representing in their writing
		as they communicate their arguments.
	MA 6250 –	Candidates are required to write proofs in this
	Analysis	course. Candidates use the mathematical
		practices of problem solving and reasoning as
		they formulate their proofs, and the
		connecting and representing in their writing
		as they communicate their arguments.
	MA 6400 – Topics	Candidates are each required to do a project
	in Advanced	for which the use of technological tools plays
	Mathematics and	a major role in helping them solve a real-
	Technology	world problem. Candidates use the
		mathematical practices of problem solving
		and reasoning as they formulate use tools to
		formulate their respective solutions, and the
		practices of connecting and representing in
		their writing as they communicate their
AP M. 1.11	MA2020 D' /	solutions.
21) Model how the	MA3030 – Discrete	Candidates are asked to draw upon their
mathematical	Math	knowledge of school mathematics in
understanding within and		loornad in their college courses (a.g. number
among mathematical		theory set theory and calculus) to learn
domains intersects with the		methods of proof and proving
mathematical practices of	MA 6400 Topics	Condidates are each required to do a project
problem solving,	in Advanced	in this course in which he or she
reasoning, communicating,	Mathematics and	demonstrates a mathematical solution to a
connecting, and	Technology	real-world problem using technology As
representing.	reemiorogy	part of solving their selected problems.
		candidates have to make decisions about
		what field of mathematics and corresponding
		ideas/methods to use in their solution.
		Solving the problem candidates choose
		require mathematical reasoning, making
		connections to mathematics. Candidates
		present their project to the class. In preparing
		for the presentation candidates make
		decisions about how to communicate and
		represent their thinking and their solution
		process(es).
	MA 7500 – Topics	Candidates are each required to do a project
	in Mathematics and	in this course on a topic taken from
	Mathematics	secondary mathematics. Candidates' write a
	Education	paper on this topic and share their project

	with the class. In preparing for the
	with the cluss. In propuling for the
	presentation candidates make decisions about
	how to communicate and represent their
	thinking and their solution process(es).

NCTM CAEP Standards (2012) Content Alignment Table – Secondary (Supporting Documenting Course Grades as an Assessment of Candidate Content Knowledge)

Instructions:

Completion of this mathematics content alignment table is one of the required components of the documentation requirements for programs using course grades as an assessment. This document is designed as a form and must be used for entering required information into each "Click here to enter text" box, which will expand as needed. Do not retype the form. Since this form is a template, it will open as a document to be renamed and saved upon completion. Separate forms by program level (e.g., undergraduate or graduate) and program type (e.g., MAT or M. Ed.) are required. Specific directions for completing the form based on the location of mathematics/mathematics education coursework completion follow:

Undergraduate Programs and Graduate Programs where Mathematics/Mathematics Education Coursework Taken at Submitting Institution

- Column 2: Specify selected course number(s) and name(s) of **required** coursework that addresses each competency listed in the first column. If no required coursework addresses a specific competency, enter "Not addressed."
- Column 3: Describe all technology and representational tools, including concrete models, used in **required** courses that address each competency listed in the first column. If required coursework does not include the use of technology and representational tools, enter "Not included."
- Column 4: Include course description(s) for all **required** courses listed in the second column. It is sufficient to include course descriptions by mathematical domain (e.g., algebra, statistics and probability) rather than by individual competency.

Graduate Program where Mathematics/Mathematics Education Coursework Taken at Another (Non-Submitting) Institution

- Column 2: Specify selected course number(s) and name(s) of **required** undergraduate coursework that addresses each competency listed in the first column. Describe the advising decision that ensures program completers have studied the required mathematics content. If no required coursework addresses a specific competency, enter "Not addressed."
- Column 3: Describe all technology and representational tools, including concrete models, used in **required** courses that address each competency listed in the first column. If not known, do not leave the cell blank; rather, enter "Not verifiable".
- Column 4: Include course description(s) for all **required** courses listed in the second column. It is sufficient to include course descriptions by mathematical domain (e.g., algebra, statistics and probability) rather than by individual competency.
- Include the transcript analysis form that is used by the program to determine sufficiency of undergraduate courses taken by a program candidate at another institution and to specify coursework required to remediate deficiencies in the mathematics acquirement of program candidates or completers. The transcript analysis process must adhere to the <u>Guidelines for</u> <u>Documenting a Transcript Analysis</u>.

Institution Name	SUNY Old Westbury
Program Name	Adolescence Education: Mathematics
Program Type (e.g.,	M.A.T
Baccalaureate or M.Ed.)	

A. Secondary Mathematics Teachers

All secondary mathematics teachers should be prepared with depth and breadth in the following mathematical domains: Number, Algebra, Geometry, Trigonometry, Statistics, Probability, Calculus, and Discrete Mathematics. All teachers certified in secondary mathematics should know, understand, teach, and be able to communicate their mathematical knowledge with the breadth of understanding reflecting the following competencies for each of these domains.

A.1. Number and Quantity To be prepared to develop student mathematical proficiency, all secondary mathematics teachers should know the following topics related to number and quantity with their content understanding and mathematical practices supported by appropriate technology and varied representational tools, including concrete models:	Required Course Number(s) and Name(s)	Technology and Representational Tools Including Concrete Models by Competency	Course Description(s)
A.1.1 Structure, properties, relationships, operations, and representations including standard and non-standard algorithms, of numbers and number systems including integer, rational, irrational, real, and complex numbers	MA6200 – Algebra; MA6250 - Analysis	Graphing calculators (e.g., TI-83 TI-84, Casio 9850) or online graphing calculators (e.g., https://www.desm os.com/calculator)	MA2310 – Topics include functions and their graphs, limits and continuity, derivatives of polynomials, rational functions, algebraic functions, exponential &
A.1.2 Fundamental ideas of number theory (divisors, factors and factorization, primes, composite numbers, greatest common factor, least common multiple, and modular arithmetic)	MA3030 – Discrete Math; MA6200 - Algebra	Graphing calculators (e.g., TI-83 TI-84, Casio 9850) or online graphing calculators (e.g., https://www.desm os.com/calculator)	logarithmic functions, and trigonometric functions, and applications of the derivative (e.g., velocity and acceleration problems; graphing functions).
A.1.3 Quantitative reasoning and relationships that include ratio, rate, and proportion and the use of units in problem situations	MA2310 – Calculus & Analytical Geometry 1; MA6100 – Probability &	Graphing calculators (e.g., TI-83 TI-84, Casio 9850) or online graphing	Additional topics include solving related rates problems for which students use quantitative reasoning

	Statistics	calculators (e.g.,	and relationships (e.g.,
		os.com/calculator)	MA 3030 Ap
A.1.4 Vector and matrix operations, modeling, and applications	MA3160 – Linear Algebra; MA3330 – Calculus & Analytical Geometry 3	Graphing calculators (e.g., TI-83 TI-84, Casio 9850) or online graphing calculators (e.g., https://www.desm os.com/calculator)	introduction to discrete mathematical structures. Topics include propositional and predicate logic, set theory, relations and functions, induction
A.1.5 Historical development and perspectives of number, number systems, and quantity including contributions of significant figures and diverse cultures	MA7500 - Topics in Mathematics and Mathematics Education	Click here to enter text.	and recursion, algorithms and number theory, and graphs and trees. Candidates learn about the concept of proof and techniques of proving in mathematical contexts which include fundamental ideas of number theory (e.g., divisors, factors & factorization, prime/composite numbers modular arithmetic, greatest common factors, least common factors, least common multiples and modular arithmetic). MA3160 - An introduction to linear algebra beginning with two and three dimensional spaces, and including such topics as matrices, systems of equations, determinants, vector spaces, linear transformations, eigenvalues, and applications. MA3330 – Three main areas will be studied. The first is the Vector algebra and geometry

	of three-dimensional
	space including: lines.
	planes, and curves in
	space: polar
	cylindrical and
	spherical coordinate
	spherical coolullate
	systems. Using this
	geometry, limits,
	partial differentiation,
	directional derivatives,
	max-min theory, and
	Lagrange Multipliers
	are studied. The final
	area of study is
	integration, including
	double, triple integrals
	line integrals and the
	divergence Green's
	and Stokes Theorems
	MAG100 This course
	MACIOU - I Mis course
	presents the
	mathematical laws of
	random phenomena,
	including discrete and
	continuous random
	variables, expectation
	and variance, and
	common probability
	distributions such as
	the binomial. Poisson
	and normal
	distributions Tonics
	also include basic
	also include dasic
	ideas and techniques
	or statistical analysis
	such as descriptive
	statistics, frequency
	distributions and
	graphs, measures of
	central tendency,
	measures of
	dispersion, correlation.
	inferential statistics
	and hypothesis testing
	and error Structures
	and problems relevant
	and provients relevant

	to the secondary
	mathematics
	curriculum will be
	addressed. Use of
	quantitative reasoning
	is a critical aspect of
	this course
	MA6200 This course
	MA0200 - This course
	A hate at A laches
	Abstract Algebra.
	Structure, properties,
	relationships,
	operations, and
	representations
	including standard and
	non-standard
	algorithms of numbers
	an number systems
	including integer,
	rational, irrational,
	real, and complex
	numbers are addressed
	through the study of
	the theory of groups.
	rings, and fields.
	Basic number theory
	(e.g., divisors, factors
	and factorization
	primes greatest
	common divisor least
	common multiple and
	modular arithmetic)
	matrix algebra and
	more abstract concents
	are addressed as well
	MA6250 This course
	MA0230 – This course
	introduction to
	rigorous real analysis.
	I opics include the real
	number system,
	sequence and series of
	real numbers, topology
	of the real line, limits
	and continuity,
	sequence and series of

	functions,
	differentiability and
	integrability of
	functions Within this
	course the number
	course the number
	systems are studied
	(e.g., counting
	numbers, integers,
	rationals, real
	numbers, and complex
	numbers).
	MA7500 – Historical
	development and
	normanatives of
	perspectives of
	numbers, number
	systems, and quantities
	including contributions
	of significant figures
	are addressed as part
	of this course.
	Candidates will read
	historical and
	contemporary research
	literature As part of
	the history of
	methometics
	mathematics
	component, topics
	include mathematics
	from the Greeks (e.g.,
	Pythagoreans, Euclid)
	and follow the
	development of
	mathematics,
	including Indian and
	Chinese mathematics.
	up to more modern
	times (including
	Algebra & Calculus)
	Connections are made
	from the literal 1
	from the historical
	development to the
	modern way we teach
	(e.g., "propositions"
	are the same geometric
	axioms in MA6150
	and in high school

			geometry).
A.2. Algebra To be prepared to develop student mathematical proficiency, all secondary mathematics teachers should know the following topics related to algebra with their content understanding and mathematical practices supported by appropriate technology and varied representational tools, including concrete models:	Required Course Number(s) and Name(s)	Technology and Representational Tools Including Concrete Models by Competency	Course Description(s)
A.2.1 Algebraic notation, symbols, expressions, equations, inequalities, and proportional relationships, and their use in describing, interpreting, modeling, generalizing, and justifying relationships and operations	MA3160 – Linear Algebra; MA6200 – Algebra	Graphing calculators (e.g., TI-83 TI-84, Casio 9850) or online graphing calculators (e.g., https://www.desm os.com/calculator)	MA2310 – Topics include functions and their graphs, limits and continuity, derivatives of polynomials, rational functions, algebraic functions, exponential &
A.2.2 Function classes including polynomial, exponential and logarithmic, absolute value, rational, trigonometric, including those with discrete domains (e.g., sequences), and how the choices of parameters determine particular cases and model specific situations	MA2310 – Calculus & Analytical Geometry 1; MA2320 – Calculus & Analytical Geometry 2; MA6250 - Analysis	Graphing calculators (e.g., TI-83 TI-84, Casio 9850) or online graphing calculators (e.g., https://www.desm os.com/calculator)	logarithmic functions, and trigonometric functions, and applications of the derivative. As part of the application of the derivative, candidates solve both abstract and real-world problems which require
A.2.3 Functional representations (tables, graphs, equations, descriptions, recursive definitions, and finite differences), characteristics (e.g., zeros, intervals of increase or decrease, extrema, average rates of change, domain and range, and end behavior), and notations as a means to describe, reason, interpret, and analyze relationships and to build new functions	MA2310 – Calculus & Analytical Geometry 1; MA2320 – Calculus & Analytical Geometry 2; MA6250 - Analysis	Graphing calculators (e.g., TI-83 TI-84, Casio 9850) or online graphing calculators (e.g., https://www.desm os.com/calculator)	examinations of patterns of change in functions (e.g., polynomials and exponential), proportional and inversely proportional relationships between quantities and between functions (e.g., f(x) and f'(x) and f'(x) and f''(x)) and how the choices of parameters
A.2.4 Patterns of change in linear, quadratic, polynomial,	MA2310 – Calculus &	calculators (e.g.,	determine particular

and exponential functions and in proportional and inversely proportional relationships and types of real-world relationships these functions can model A.2.5 Linear algebra including vectors, matrices, and transformations	Analytical Geometry 1; MA2320 – Calculus & Analytical Geometry 2; MA6250 - Analysis MA3160 – Linear Algebra; MA6200 - Algebra	TI-83 TI-84, Casio 9850) or online graphing calculators (e.g., https://www.desm os.com/calculator) Graphing calculators (e.g., TI-83 TI-84, Casio 9850) or online graphing calculators (e.g., https://www.desm os.com/calculator)	cases and model specific situations. Given different representations of functions, candidates interpret and analyze the given data to identify characteristics (e.g domain, range, zeroes, local min/max points, intervals of increase/decrease, end behaviors). Candidates communicate and support their findings
A.2.6 Abstract algebra, including groups, rings, and fields, and the relationship between these structures and formal structures for number systems and numerical and symbolic calculations A.2.7 Historical development and perspectives of algebra including contributions of significant figures and diverse cultures	MA6200 - Algebra MA7500 - Topics in Mathematics and Mathematics Education	Click here to enter text. Graphing calculators (e.g., TI-83 TI-84, Casio 9850) or online graphing calculators (e.g., https://www.desm os.com/calculator)	analytically (e.g., using limits, the derivative, domain and range restrictions). They use the derivative to determine the velocity and acceleration of functions for a given position function. MA2320 - Topics include indefinite and definite integral, applications of definite integral, integration techniques, infinite sequences and series, and analytic geometry. Candidates use integration techniques to determine position and/or velocity functions from a given function that describes acceleration. As part of the application of integration techniques and the concept of area under a curve, candidates solve both

problems. MA3160 - An introduction to linear algebra beginning with two and three dimensional spaces, and including such topics as matrices, systems of equations, determinants, vector spaces, linear
MA3160 - An introduction to linear algebra beginning with two and three dimensional spaces, and including such topics as matrices, systems of equations, determinants, vector spaces, linear
introduction to linear algebra beginning with two and three dimensional spaces, and including such topics as matrices, systems of equations, determinants, vector spaces, linear
algebra beginning with two and three dimensional spaces, and including such topics as matrices, systems of equations, determinants, vector spaces, linear
two and three dimensional spaces, and including such topics as matrices, systems of equations, determinants, vector spaces, linear
dimensional spaces, and including such topics as matrices, systems of equations, determinants, vector spaces, linear
and including such topics as matrices, systems of equations, determinants, vector spaces, linear
topics as matrices, systems of equations, determinants, vector spaces, linear
systems of equations, determinants, vector spaces, linear
determinants, vector spaces, linear
spaces, linear
spaces, inical
transformations
aigenvalues and
applications.
MA0200 - 1 ms course
1s a rigorous course in
Abstract Algebra.
Algebraic notation,
symbols, and
expressions are used to
justify relationships
and operations through
the study of theory of
groups, rings, and
fields. Basic number
theory (e.g., divisors,
factors and
factorization primes
greatest common
divisor least common
multiple and modular
arithmatic) matrix
alterinetic), matrix
abstract concepts are
studied as well.
MA6250 – This course
provides an
introduction to
rigorous real analysis.
Topics include the real
number system,
sequence and series of
real numbers, topology
of the real line. limits
and continuity.
sequence and series of

	functions,
	differentiability and
	integrability of
	functions Sequences
	runctions. Sequences
	and series are studied
	in detail and rigor
	including convergence
	of sequences with an
	nth formula and
	recursively defined
	sequences, divergence
	with proof and Taylor
	sarias
	MA7500 Historical
	MA/300 – Historicai
	development and
	perspectives of algebra
	including contributions
	of significant figures
	and diverse cultures
	are studied as part of
	this course. Candidates
	will read historical and
	contemporary research
	literature As part of
	the history of
	methamatica
	mainematics
	component, topics
	include mathematics
	from the Greeks (e.g.,
	Pythagoreans, Euclid)
	and follow the
	development of
	mathematics, including
	Indian and Chinese
	mathematics, up to
	more modern times
	(including Algebra &
	Calculus)
	Connections are made
	from the historical
	development to the
	development to the
	modern way we teach
	(e.g., "propositions"
	are the same geometric
	axioms in MA6150
	and in high school

			geometry).
A.3. Geometry and Trigonometry To be prepared to develop student mathematical proficiency, all secondary mathematics teachers should know the following topics related to geometry and trigonometry with their content understanding and mathematical practices supported by appropriate technology and varied representational tools, including concrete models:	Required Course Number(s) and Name(s)	Technology and Representational Tools Including Concrete Models by Competency	Course Description(s)
A.3.1 Core concepts and principles of Euclidean in two and three dimensions and two- dimensional non-Euclidean geometries	MA3330 – Calculus & Analytical Geometry 3; MA6150 - Geometry	Geogebra downloaded from http://www.geoge bra.org/cms/en/	MA2310 – Topics include functions and their graphs, limits and continuity, derivatives of polynomials
A.3.2 Transformations including dilations, translations, rotations, reflections, glide reflections; compositions of transformations; and the expression of symmetry in terms of transformations	MA3160 – Linear Algebra; MA6150 - Geometry	Graphing calculators (e.g., TI-83 TI-84, Casio 9850) or online graphing calculators (e.g., https://www.desm os.com/calculator) . Geogebra downloaded from http://www.geoge bra.org/cms/en/	or polynomials, rational functions, algebraic functions, exponential & logarithmic functions, and trigonometric functions, and applications of the derivative. As part of their study of applications of the derivative students
A.3.3 Congruence, similarity and scaling, and their development and expression in terms of transformations	MA6150 - Geometry	Graphing calculators (e.g., TI-83 TI-84, Casio 9850) or online graphing calculators (e.g., https://www.desm os.com/calculator) . Geogebra downloaded from http://www.geoge bra.org/cms/en/	solve related-rates problems including periodic phenomena which provide students with opportunities to apply their knowledge of right triangles which includes the Pythagorean Theorem and trigonometric ratios
A.3.4 Right triangles and trigonometry	MA2310 – Calculus & Analytical Geometry 1; MA2320 – Calculus & Analytical	Graphing calculators (e.g., TI-83 TI-84, Casio 9850) or online graphing	MA2320 - Topics include indefinite and definite integral, applications of definite

A.3.5 Application of periodic phenomena and trigonometric identities	Geometry 2; MA6150 - Geometry MA2310 – Calculus & Analytical Geometry 1; MA2320 – Calculus & Analytical Geometry 2	calculators (e.g., https://www.desm os.com/calculator) . Geogebra downloaded from http://www.geoge bra.org/cms/en/ Graphing calculators (e.g., TI-83 TI-84, Casio 9850) or online graphing calculators (e.g., https://www.desm os.com/calculator)	integral, integration of functions (e.g., polynomials, rational, algebraic, exponential & logarithmic, and trigonometric), infinite series, and analytic geometry. In order to integrate when trigonometric functions are involved, trigonometric identities are used. In addition, the method of trigonometric
 A.3.6 Identification, classification into categories, visualization, and representation of two- and three-dimensional objects (triangles, quadrilaterals, regular polygons, prisms, pyramids, cones, cylinders, and spheres) A.3.7 Formula rationale and derivation (perimeter, area, surface area, and volume) of two- and three-dimensional objects (triangles, quadrilaterals, regular polygons, rectangular prisms, pyramids, cones, cylinders, and spheres), with attention to units, unit comparison, and the iteration, additivity, and invariance related to measurements 	MA3330 – Calculus and Analytic Geometry 3; MA6150 - Geometry MA3330 – Calculus and Analytic Geometry 3; MA6150 - Geometry	Geogebra downloaded from http://www.geoge bra.org/cms/en/ Graphing calculators (e.g., TI-83 TI-84, Casio 9850) or online graphing calculators (e.g., https://www.desm os.com/calculator) . Geogebra downloaded from http://www.geoge bra org/cms/en/	substitution requires candidates to use right triangles and trigonometry. MA3160 - An introduction to linear algebra beginning with two and three dimensional spaces, and including such topics as matrices, systems of equations, determinants, vector spaces, linear transformations, eigenvalues, and applications of linear
A.3.8 Geometric constructions, axiomatic reasoning, and proof	MA6150 - Geometry	Geogebra downloaded from http://www.geoge bra.org/cms/en/	transformations include dilations, translations, rotations, reflections, glide
A.3.9 Analytic and coordinate geometry including algebraic proofs (e.g., the Pythagorean Theorem and its converse) and equations of lines and planes, and expressing geometric properties of conic sections with equations	MA2310 – Calculus & Analytical Geometry 1; MA2320 – Calculus & Analytical Geometry 2; MA3330 – Calculus & Analytic Geometry 3	Graphing calculators (e.g., TI-83 TI-84, Casio 9850) or online graphing calculators (e.g., https://www.desm os.com/calculator) . Geogebra downloaded from	reflections, compositions of reflections, and the expression of symmetry using matrices. MA3330 – Core concepts and principles of Euclidean

		http://www.geoge	Geometry are studied
		bra.org/cms/en/	in two dimensions
A.3.10 Historical development	MA6150 –	Graphing	(e.g. polar coordinates,
and perspectives of geometry	Geometry;	calculators (e.g.,	finding areas of 2-
and trigonometry including	MA7500 - Topics	TI-83 TI-84, Casio	dimensional shapes
contributions of significant	in Mathematics	9850) or online	using double
figures and diverse cultures	and Mathematics	graphing	integration) and three
	Education	calculators (e.g.,	dimensions (e.g.
		os com/calculator)	algebra and geometry
		os.com/calculator)	of three-dimensional
		•	space including: lines.
			planes, and curves in
			space: cylindrical. and
			spherical coordinate
			systems, finding
			volumes of 3-
			dimesional objects
			(e.g., cones, spheres
			cylinders) using
			double and triple
			integration).
			MA6150 – This course
			is aimed at
			mathematics teachers
			who are interested in
			enhancing their
			understanding of basic
			and advanced topics in
			geometry. It aims to
			give teachers a
			foundation in the
			fundamental working
			and structure of the
			field, both from a
			historical perspective
			and through the
			examination of both
			Euclid's work and
			modern geometry,
			including non-
			Euclidean systems.
			Candidates will learn
			how to use Dynamical
			Geometry Software.
			Topics include use of
			dynamical geometry

software as a means	s to
avamina	
examine	
transformations (e.g	Ş.,
dilations, shears),	
classical geometry	
with constructions.	
axiomatics and proc	of.
Euclidean geometry	,
coordinate geometry	, v
and vectors	y
transformations, no	n
Evolideen geometer	11- ,
	′, 1
nistorical backgroun	na
of Euclidean and no	on-
Euclidean geometri	es,
and three-dimension	nal
geometry and spatia	ıl
reasoning.	
MA7500 – Historic	al
development and	
perspectives of	
geometry and	
trigonometry includ	ling
contributions of	U
significant figures a	nd
diverse cultures are	
studied as part of th	is
course. Candidates	
will read historical	and
contemporary resea	rch
literature As part of	of
the history of	л
methometics	
component, topics	~
	s
from the Greeks (e.	g.,
Pythagoreans, Eucl	ld)
and follow the	
development of	
mathematics,	
including Indian an	d
Chinese mathematic	cs,
up to more modern	
times (including	
Algebra & Calculus	s).
Connections are ma	de

	from the historical
	development to the
	modern way we teach
	(e.g., "propositions"
	are the same geometric
	axioms in MA6150
	and in high school
	geometry).

A.4. Statistics and Probability To be prepared to develop student mathematical proficiency, all secondary mathematics teachers should know the following topics related to statistics and probability with their content understanding and mathematical practices supported by appropriate technology and varied representational tools, including concrete models:	Required Course Number(s) and Name(s)	Technology and Representational Tools Including Concrete Models by Competency	Course Description(s)
A.4.1 Statistical variability and its sources and the role of randomness in statistical inference	MA3210 – Introduction to Statistics and Probability; MA6100 – Statistics and Probability	Graphing calculators (e.g., TI-83 TI-84, Casio 9850) or online graphing calculators (e.g., https://www.desm os.com/calculator) Statistical software (e.g., Base SAS, Mathematica, Maple).	MA3210 - A one- semester course containing foundation material in probability and statistical inference. Topics include discrete and continuous distributions, unirvariate and bivariate distributions, random events,
A.4.2 Creation and implementation of surveys and investigations using sampling methods and statistical designs, statistical inference (estimation of population parameters and hypotheses testing), justification of conclusions, and generalization of results	MA3210 – Introduction to Statistics and Probability; MA6100 – Statistics and Probability; MA6400 – Topics in Advanced Mathematics and Technology	Graphing calculators (e.g., TI-83 TI-84, Casio 9850) or online graphing calculators (e.g., https://www.desm os.com/calculator) . Computer software (e.g., Mathematica, Maple, Statistical Analysis System [SAS], Base SAS).	estimation and hypothesis testing. Candidates are given multiple opportunities to examine empirical and theoretical probability of simple and compound events. Probability studied include discrete, continuous, and conditional. The are many opportunities to

A.4.3 Univariate and bivariate data distributions for categorical data and for discrete and continuous random variables, including representations, construction and interpretation of graphical displays (e.g., box plots, histograms, cumulative frequency plots, scatter plots), summary measures, and comparisons of distributions A 4 4 Empirical and	MA3210 – Introduction to Statistics and Probability; MA6100 – Statistics and Probability	Graphing calculators (e.g., TI-83 TI-84, Casio 9850) or online graphing calculators (e.g., https://www.desm os.com/calculator)	examine random phenomena, simulations and probability distributions in the context of modeling real-world phenomena and using statistics and probability in decision making. MA6100 – This course
A.4.4 Empirical and theoretical probability (discrete, continuous, and conditional) for both simple and compound events	MA3210 – Introduction to Statistics and Probability; MA6100 – Statistics and Probability	calculators (e.g., TI-83 TI-84, Casio 9850) or online graphing calculators (e.g., https://www.desm os.com/calculator)	mAction – This course presents the mathematical laws of random phenomena, including discrete and continuous random variables, expectation and variance, and common probability
A.4.5 Random (chance) phenomena, simulations, and probability distributions and their application as models of real phenomena and to decision making	MA3210 – Introduction to Statistics and Probability; MA6100 – Statistics and Probability; MA6400 – Topics in Advanced Mathematics and Technology	Graphing calculators (e.g., TI-83 TI-84, Casio 9850) or online graphing calculators (e.g., https://www.desm os.com/calculator) . Computer software (e.g., Mathematica, Maple, Statistical Analysis System [SAS], Base SAS).	distributions such as the binomial, Poisson, and normal distributions. Topics also include basic ideas and techniques of statistical analysis such as descriptive statistics, frequency distributions and graphs, measures of central tendency, measures of
A.4.6 Historical development and perspectives of statistics and probability including contributions of significant figures and diverse cultures	Click here to enter text.	Click here to enter text.	dispersion, correlation, inferential statistics and hypothesis testing and error. Structures and problems relevant to the secondary mathematics curriculum will be addressed. MA6400 - Candidates will be introduced to various branches of contemporary mathematics, recent

	developments in
	mathematics, and the
	use of technology in
	problem solving and in
	teaching. A connection
	among different
	branches of
	mathematics will be
	emphasized. Students
	will be given real-
	world and abstracts
	problems to solve
	using technologies.
	For abstract problems
	candidates use
	technologies such as
	Mathematica or Maple.
	For real-world
	problems candidates
	will use Statistical
	Analysis System
	(SAS) software or
	Base SAS software to
	examine the data
	resulting from their
	surveys and
	investigations.

A.5. Calculus To be prepared to develop student mathematical proficiency, all secondary mathematics teachers should know the following topics related to calculus with their content understanding and mathematical practices supported by appropriate technology and varied representational tools, including concrete models:	Required Course Number(s) and Name(s)	Technology and Representational Tools Including Concrete Models by Competency	Course Description(s)
A.5.1 Limits, continuity, rates	MA2310 - Calculus	Graphing	MA2310 – Topics
of change, the Fundamental	& Analytical	calculators (e.g.,	include functions and
Theorem of Calculus, and the	Geometry 1;	TI-83 TI-84,	their graphs, limits and
meanings and techniques of	MA2320 - Calculus	Casio 9850) or	continuity, derivatives
differentiation and integration	& Analytical	online graphing	of polynomials
	Geometry 2;	calculators (e.g.,	rational functions
	MA3330 - Calculus	https://www.desm	rational functions,

	& Analytical	os.com/calculator)	algebraic functions,
	Geometry 3;		exponential &
	MA6250 - Analysis		logarithmic functions,
A.5.2 Parametric, polar, and	MA3330 - Calculus	Graphing	and trigonometric
vector functions	& Analytical	calculators (e.g.,	functions, and
	Geometry 3;	TI-83 TI-84,	applications of the
		Casio 9850) or	derivative. As part of
		online graphing	solving problems
		https://www.desm	which require
		os.com/calculator)	candidates to use the
			derivative, students
A.5.3 Sequences and series	MA2320 - Calculus	Graphing	also make use of
	& Analytical	calculators (e.g.,	geometry and
	Geometry 2;	TI-83 TI-84,	trigonometric concepts
	MA6250 - Analysis	Casio 9850) or	(e.g., Pythagorean
		online graphing	Theorm, trig ratios).
		calculators (e.g.,	MA2320 - Topics
		https://www.desm	include indefinite and
		os.com/calculator)	definite integral
A 5.4 Multivariate functions	MA3330 - Calculus	Graphing	(Fundamental
	& Analytical	calculators (e.g.	Theorem of Calculus),
	Geometry 3	TI-83 TI-84.	applications of definite
		Casio 9850) or	integral, integration
		online graphing	techniques, infinite
		calculators (e.g.,	sequences and series,
		https://www.desm	and analytic geometry.
		os.com/calculator)	Candidates solve
A 5.5 Applications of	MA2210 Coloulus	Crophing	problems that require
A.J.J Applications of	& Analytical	calculators (e.g.	the students to make
trigonometry concepts to solve	Geometry 1.	TI-83 TI-84	use of their
problems involving calculus	MA2320 - Calculus	Casio 9850) or	understandings of the
r	& Analytical	online graphing	concepts of function,
	Geometry 2;	calculators (e.g.,	geometry, and
	MA3330 - Calculus	https://www.desm	trigonometry in
	& Analytical	os.com/calculator)	addition to their newly
	Geometry 3;	•	acquired
A.5.6 Historical development	MA7500 - Topics	Graphing	understandings of the
and perspectives of calculus	in Mathematics	calculators (e.g.,	definite integral and
including contributions of	and Mathematics	11-85 11-84, Cosio 0850) or	integration techniques.
significant figures and diverse	Education	Casio 9000) Of online graphing	MA3330 – Three main
		calculators (e o	areas will be studied.
		https://www.desm	The first is the Vector
		os.com/calculator)	algebra and geometry
			of three-dimensional
			space including: lines,
			planes, and curves in

	space; poloar,
	cylindrical, and
	spherical coordinate
	systems. Using this
	geometry limits
	portial differentiation
	dinactional derivation,
	directional derivatives,
	max-min theory, and
	Lagrange Multipliers
	are studied. The final
	area of study is
	integration, including
	double, triple integrals,
	line integrals, and the
	divergence, Green's
	and Stokes Theorems
	MA6250 - This course
	provides an
	introduction to
	rigorous real analysis
	Topics include the real
	Topics include the real
	number system,
	sequence and series of
	real numbers, topology
	of the real line, limits
	and continuity,
	sequence and series of
	functions,
	differentiability and
	integrability of
	functions.
	MA7500 – Historical
	development and
	perspectives of
	calculus including
	contributions of
	significant figures and
	diverse cultures and
	anverse cultures are
	studied as part of this
	course. Candidates
	will read historical and
	contemporary research
	literature. As part of
	the history of
	mathematics
	component, topics

		include mathematics
		from the Greeks (e.g.,
		Pythagoreans, Euclid)
		and follow the
		development of
		mathematics, including
		Indian and Chinese
		mathematics, up to
		more modern times
		(including Algebra &
		Calculus).
		Connections are made
		from the historical
		development to the
		modern way we teach
		(e.g., "propositions"
		are the same geometric
		axioms in MA6150
		and in high school
		geometry).

A.6. Discrete Mathematics To be prepared to develop student mathematical proficiency, all secondary mathematics teachers should know the following topics related to discrete mathematics with their content understanding and mathematical practices supported by appropriate technology and varied representational tools, including concrete models:	Required Course Number(s) and Name(s)	Technology and Representational Tools Including Concrete Models by Competency	Course Description(s)
A.6.1 Discrete structures including sets, relations, functions, graphs, trees, and networks	MA3030 – Discrete Mathematics	Graphing calculators (e.g., TI-83 TI-84, Casio 9850) or online graphing calculators (e.g., https://www.desm os.com/calculator)	MA3030 – An introduction to discrete mathematical structures. Topics include propositional and predicate logic, set theory, relations and functions, induction
A.6.2 Enumeration including permutations, combinations, iteration, recursion, and finite differences	MA3030 – Discrete Mathematics ; MA3210 – Introduction to Probability and Statistics;	Graphing calculators (e.g., TI-83 TI-84, Casio 9850) or online graphing calculators (e.g.,	and recursion, algorithms and number theory, and graphs and trees. Candidates learn about the concept of

	MA6100 -	https://www.desm	proof and techniques
	Probability and	os com/calculator)	of proving in
	Statistics	obleonit calculator)	mothematical contants
A 6.3 Propositional and	MA3030 – Discrete	Click here to enter	mathematical contexts
predicate logic	Mathematics	text.	which include
A.6.4 Applications of discrete	MA3030 – Discrete	Graphing	permutations,
structures such as modeling and	Mathematics:	calculators (e.g	combinations, iteration
solving linear programming	MA6400 - Topics in	TI-83 TI-84.	and recursion.
problems and designing data	Advanced	Casio 9850) or	Applications of
structures	Mathematics and	online graphing	discrete structures such
	Technology	calculators (e.g.,	as modeling and
		https://www.desm	solving linear
		os.com/calculator)	programming problems
		Computer	and designing data
		software (e.g.,	structures are included.
		Maple,	MA3210 - A one-
		Mathematica)	semester course
A.6.5 Historical development	Click here to enter	Graphing	containing foundation
and perspectives of discrete	text.	calculators (e.g.,	material in probability
mathematics including		TI-83 TI-84,	and statistical
contributions of significant		Casio 9850) or	inference Topics
figures and diverse cultures		online graphing	include discrete and
		calculators (e.g.,	
		https://www.desm	continuous
		os.com/calculator)	distributions, random
		•	events, estimation and
			hypothesis testing,
			enumeration including
			permutations and
			combinations is used to
			find probability of
			events.
			MA6100 – This course
			presents the
			mathematical laws of
			random phenomena.
			including discrete and
			continuous random
			variables expectation
			and variance and
			common probability
			distributions such as
			the binomicl. Deisson
			and normal
			and normal
			distributions. Topics
			also include basic ideas
			and techniques of
			statistical analysis such

	as descriptive statistics,
	frequency distributions
	and graphs, measures
	of central tendency
	measures of dispersion
	ineasures of dispersion,
	correlation, interential
	statistics and
	hypothesis testing and
	error. Structures and
	problems relevant to
	the secondary
	mathematics
	curriculum will be
	addressed
	MA6400 - Students
	will be introduced to
	will be introduced to
	various branches of
	contemporary
	mathematics, recent
	developments in
	mathematics, and the
	use of technology in
	problem solving and in
	teaching. A connection
	among different
	branches of
	mathematics will be
	emphasized Students
	will be given
	opportunities to solve
	real world problems
	real-world problems
	using, for example,
	modelling and for
	which technology (e.g.,
	Mathematica, Maple,
	SAS) plays a critical
	role in finding
	solutions.
	MA7500 – As part of
	this course, students
	will read historical and
	contemporary research
	literature As part of
	the history of
	une mistory of
	mathematics
	component topics

	include mathematics
	from the Greeks (e.g.,
	Pythagoreans, Euclid)
	and follow the
	development of
	mathematics, including
	Indian and Chinese
	mathematics, up to
	more modern times
	(including Algebra &
	Calculus).
	Connections are made
	from the historical
	development to the
	modern way we teach
	(e.g., "propositions"
	are the same geometric
	axioms in MA6150
	and in high school
	geometry).

Appendix B: Documentation Requirements for a Transcript Analysis (All Graduate Programs):

1. Describe the transcript analysis process including when it occurs, who does the analysis, etc.

Transcript analysis for prospective graduate students occurs when the Program Coordinator is informed by the Admissions Office that the prospective candidate's application to the college is complete. The transcript(s) is/are examined to identify what mathematics classes the prospective mathematics candidate has taken along with the corresponding grades. Prior to January 2013, when the current Program Coordinator took over full responsibilities of her position, the process used to analyze transcripts was not documented. The current Program Coordinator was told that the previous Program Coordinator, who no longer works for the college, had sole responsibility for making admissions decisions. In the spring semester of 2013, the current Program Coordinator and two professors from the Mathematics Department established a protocol for admissions into the MAT program. This program is for certification in Adolescence Education: Mathematics (grades 7 - 12). We do not offer a Middle School Education Program. The protocol is a follows:

- 1. After the Program Coordinator is notified by the Admissions office that a prospective candidate's application is complete, copies of the prospective candidate's transcripts are examined by a math education admissions committee composed of the Program Coordinator who is a member of the School of Education and the Math Department, the Math Department chair, and another full-time math professor. The latter two members of this committee teach many of the mathematics classes taken by our MAT candidates.
- 2. Based upon the examination of the transcripts, one of three decisions are made:
 - a. The candidate is accepted into the program.
 - b. The candidate is not accepted into the program, but is encouraged to reapply after taking mathematics classes to meet prerequisite requirements. The candidate is given a list of courses which can be taken at a community college or at Old Westbury as a non-degree student.
 - c. The candidate is not accepted into the program.

2. Describe policies used by the program in evaluating the transcript

Prior to the Spring semester of 2013, no policy for transcript evaluation existed. In the Spring semester of 2013, the math education admissions committee was formed to establish guidelines for admitting candidates to our graduate program and to improve communications between the School of Education and the Mathematics Department. The guidelines are as follows:

- a. Admissions decisions are made by the math education admissions committee. If all three members are not available, then the decision can be made by the Program Coordinator AND one other member of the committee. No one member of the committee will decide whether or not a prospective candidate is to be admitted.
- b. The college admission requirements include the following requirements: "at least 30 credits of mathematics" with an overall GPA of 3.0. At most institutions, 30 credits are

equivalent to 10 classes. Given that undergraduate mathematics courses as Old Westbury are 4-credit classes, the committee chose to define "at least 30 credits" to mean at least eight mathematics courses. The committee decided that candidates have to have courses equivalent to six specific courses and provided general descriptions for two additional courses. The courses are as follows:

- MA2310 (Calculus and Analytic Geometry 1)
- MA2310 (Calculus and Analytic Geometry 2)
- MA3330 (Calculus and Analytic Geometry 3)
- MA3160 (Linear Algebra)
- MA3030 (Discrete Math)
- MA3210 (Probability and Statistics)
- An upper division proof class
- An elective non-remedial math class (beyond the level of Pre-Calculus)

Assumed in the "at least 30 credits of mathematics" requirement is that the credits are semester credits. For potential candidates who earned an undergraduate degree from a college/university that operates on a quarter system, the committee decided to use the following formula: 1 quarter unit equals 2/3 semester unit.

- c. **Currency of Preparation**. Sometimes a candidate may be asked to repeat a course that he/she has already taken. Such situations include a course that was taken a long time ago. The definition of "a long time ago" is determined by the committee at the time the candidate's transcripts are examined. In the last situation this policy was applied, the candidate had taken Calculus 1 (and no mathematics since) more than 10 years ago. The goal is to try and help the candidate be successful in the mathematics classes that he/she will be taking as part of the MAT course of study.
- d. Other related degrees (i.e., how are degrees in related fields addressed). For candidates who do not meet the "at least 30 credits of mathematics" requirement, the committee provides each candidate with a list of courses to take and earn an overall mathematics GPA of 3.0 or higher. The list of courses is the 8 courses (cf. bulleted list in section 2b above) minus courses the candidate has taken.
- e. **Minimum grade requirements**. For candidates who meet the "at least 30 credits of mathematics" requirement, but do not have a mathematics GPA of at least 3.0—a requirement of all candidates in our programs, the committee provides each candidate with a list of courses to retake/take and earn grades of B or higher. Courses in which candidates earn a grade of "satisfactory" are not accepted as meeting our course requirements. Courses in which candidates earn a "pass" (i.e., P) are interpreted as a letter grade of "C."
- f. Alignment clarification. For courses whose titles are not clearly aligned with NCTM standard elements, the committee uses the college's course equivalencies webpage which identifies courses offered at other institutions that have been found to be equivalent to courses at Old Westbury

(<u>https://owsis.oldwestbury.edu/pls/prod/ywsktrar.P_Disp_States</u>) to determine alignments. If the course equivalencies webpage does not contain the needed data, the committee visits websites for the institutions attended by the candidate to find online course catalogs. If online catalogs are not found, the candidate is asked to provide course information such as a syllabus or to contact those institutions for course information to help us determine course alignment.

3. Describe the process used to ensure that candidates who do not meet the coursework requirements are required to remediate mathematics content deficiencies.

To avoid challenges of ensuring candidates meet coursework deficiencies, we do not admit prospective candidates until after the content and mathematics GPA prerequisite requirements are met. 4. Provide the form used to complete the transcript analysis that is used to determine sufficiency of courses taken at another institution and to specify coursework required to remediate deficiencies in the mathematics content acquirement of admitted candidates.

Graduate Applicant: Adolescent Education: Mathematics Program: MAT MS

Course			Semester & Institution	Grade
Old Westbury Course#	Course			
MA2310	Calculus and Analytic Geometry I	required		
MA2320	Calculus and Analytic Geometry II	required		
MA3030	Discrete Mathematics	required		
MA3160	Linear Algebra	required		
MA3210	Introduction to Probability & Statistics	required		
MA3330	Calculus and Analytic Geometry III	required		
	Upper division proof class	required		
	Elective non-remedial math class (beyond the level of Pre-Calculus)	required		

Examples of proof classes offered at Old Westbury

MA3520	Transition to Advanced Mathematics (introductory proof course)	
MA4510	Geometry (upper division proof course)	
MA5120	Abstract Algebra I (upper division proof course)	
MA5320	Advanced Calculus I (upper division proof course)	

Notes:

____ Accepted

____Not accepted, but encouraged to reapply

____Not accepted